
www.manaraa.com

American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations Student Research

2-1-2016

Cash flow optimization for construction engineering portfolios Cash flow optimization for construction engineering portfolios

Gasser Galal Ali

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation Recommended Citation

APA Citation
Ali, G. (2016).Cash flow optimization for construction engineering portfolios [Master's Thesis, the
American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/589

MLA Citation
Ali, Gasser Galal. Cash flow optimization for construction engineering portfolios. 2016. American
University in Cairo, Master's Thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/589

This Master's Thesis is brought to you for free and open access by the Student Research at AUC Knowledge
Fountain. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of AUC
Knowledge Fountain. For more information, please contact thesisadmin@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/student_research
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/589?utm_source=fount.aucegypt.edu%2Fetds%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/589?utm_source=fount.aucegypt.edu%2Fetds%2F589&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:thesisadmin@aucegypt.edu

www.manaraa.com

The American University in Cairo

School of Sciences and Engineering

Department of Construction Engineering

CASH FLOW OPTIMIZATION FOR

CONSTRUCTION ENGINEERING

PORTFOLIOS

A thesis submitted to the School of Sciences and Engineering in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN CONSTRUCTION ENGINEERING

To The

Construction Engineering Department

By

GASSER GALAL ALI

BACHELOR OF SCIENCE IN CONSTRUCTION ENGINEERING

UNDER THE SUPERVISION OF

DR. A. SAMER EZELDIN

CHAIRMAN AND PROFESSOR

CONSTRUCTION ENGINEERING DEPARTMENT

THE AMERICAN UNIVERSITY IN CAIRO, EGYPT

DECEMBER 2016

www.manaraa.com

Page ii

www.manaraa.com

Abstract

One of the main issues in construction projects is finance; proper cash-flow management

is necessary to insure that a construction project finishes within time, on budget, and

yielding a satisfying profit. Poor financial management might put the contractor, or the

owner, in a situation where they are unable to finance the project due to insufficient liq-

uidity, or where they are engaged in excessive loans to finance the project, decreasing the

profit, and even creating unsettled debts. Engagement with a portfolio of large construc-

tion projects, like infrastructure projects, makes attention to finance more critical, due to

large budgets and long project durations, which also requires attention to the time value

of money when the project spans over many years and the work environment has a high

inflation rate.

This thesis aims at the analysis and optimization of the cash-flow request for large en-

gineering portfolios from the contractor’s point of view. A computational model, with a

friendly user interface, was created to achieve that. The user is able to create a portfolio of

projects, and create activities in them with different relationship types, lags, constraints,

and costs, as similar to commercial scheduling software. Parameters necessary for the

renumeration are also considered, which include the down payment percentage, duration

between invoices, duration for payment, retention percentage, etc. The model takes into

consideration the time value of money, calculated with an interest rate assigned to the

projects by the user; this could be the inflation rate or the (Minimum Attractive Rate of

Return) MARR of the contractor. Optimization is done with the objective of maximizing

the Net Present Value (NPV) for the projects as a whole, discounted at the start of the

portfolio. The variables for the optimization are lags that are assigned for each activity,

which, after rescheduling, delays the activities after their early start with the value of

those lags, and thus creates a modified cash flow for the project. Optimization of those

variables, within scheduling constraints results in a near-optimum NPV. Verification of

the model was done using sets of portfolios, and the validation was done using an actual

construction portfolio from real life. The results were satisfactory and matched initial

expectations. The NPV was successfully optimized to a near optimum. A sensitivity

analysis of the model was conducted and it showed that the model behaves as expected

for different inputs. A time test was performed, taking into consideration the effect of the

size and complexity of a portfolio on the calculation time for the model, and it showed

iii

www.manaraa.com

that the speed was satisfactory, though it should be improved. Overall, the conclusion is

that the model delivers its goal of maximizing the Net Present Value of a large portfolio

as a whole.

Page iv

www.manaraa.com

Contents

Abstract iii

1 Introduction 1

1.1 Background . 1

1.2 Problem Statement . 6

1.3 Objective . 6

1.4 Scope of Work . 6

1.5 Research Methodology . 7

1.6 Detailed Outline . 7

2 Literature Review 9

2.1 Project Portfolio management . 9

2.1.1 Project and Portfolio Planning Cycle: Project-based Management

for the Multi-project Challenge . 9

2.1.2 Multi-criteria Financial Portfolio Risk Management for Interna-

tional Projects . 11

2.1.3 Risk Management Applied to Projects, Programs, and Portfolios . . 12

2.2 Cash Flow Analysis . 12

2.2.1 Profit Measures for Construction Projects 13

2.2.2 Systems Analysis of Project Cash Flow Management Strategies . . 14

2.2.3 Analyzing the Impact of Negative Cash Flow on Construction Per-

formance in The Dubai Area . 14

2.2.4 Financial Management of the Construction Projects: A Proposed

Cash Flow Analysis Model at Project Portfolio Level 15

2.3 Optimization and Resource/Finance Based Scheduling 17

2.3.1 Optimization of Resource Allocation and Leveling Using Genetic

Algorithms . 18

2.3.2 Expanding Finance-Based Scheduling to Devise Overall-Optimized

Project Schedules . 20

2.3.3 Heuristic Method for Multi-Project Finance-Based Scheduling . . . 20

v

www.manaraa.com

2.3.4 Scheduling Resource-Constrained Projects with Ant Colony Opti-

mization Artificial Agents . 20

2.3.5 Multi-objective Optimization of Resource Leveling and Allocation

during Construction Scheduling . 21

2.3.6 Multi-objective Evolutionary Finance-Based Scheduling: Entire Projects’

Portfolio and Individual Projects within a Portfolio 22

2.3.7 Improved Genetic Algorithm Finance-Based Scheduling 23

2.3.8 Fast and Near-Optimum Schedule Optimization for Large-Scale Projects 24

2.3.9 Enhanced Trade-off of Construction Projects: Finance-Resource-

Profit . 24

2.3.10 Finance-based Scheduling using meta-heuristics: discrete versus con-

tinuous optimization problems . 24

2.4 Outcomes From Literature Review . 27

3 Model Development 29

3.1 Assumptions . 29

3.2 Model Inputs and Outputs . 30

3.3 Input from Primavera . 31

3.4 Programming Language and Packages Used 32

3.5 Database . 33

3.6 Scheduling Calculations . 35

3.7 Cash Flow Calculation . 40

3.8 Time Value of Money Calculations . 41

3.9 Optimization . 42

3.10 Graphical User Interface (GUI) . 44

4 Results and Discussion 55

4.1 Verification . 55

4.1.1 Verification Method . 55

4.1.2 Verification Results . 56

4.1.3 Verification Discussion . 56

4.2 Sensitivity Analysis . 65

4.2.1 Sensitivity Analysis Method . 65

4.2.2 Sensitivity Analysis Results . 65

4.2.3 Sensitivity Analysis Discussion . 65

4.3 NPV Improvement Test . 68

4.3.1 NPV Testing Method . 68

4.3.2 NPV Testing Results . 68

4.3.3 NPV Testing Discussion . 68

4.4 CPU Time Test . 69

Page vi

www.manaraa.com

4.4.1 CPU Time Test Method . 69

4.4.2 CPU Time Test Results . 69

4.4.3 CPU Time Test Discussion . 70

4.5 Validation . 71

4.5.1 Validation Method . 71

4.5.2 Validation Results . 71

4.5.3 Validation Discussion . 72

4.6 Validation with Updated Schedule . 81

4.6.1 Validation Method . 81

4.6.2 Validation Results and Discussion 81

5 Conclusion and Recommendations 83

5.1 Conclusion . 83

5.1.1 Model and GUI . 83

5.1.2 CPU Time . 84

5.1.3 Verification . 84

5.1.4 Validation . 84

5.1.5 Optimization Algorithm . 84

5.1.6 Sensitivity Analysis . 85

5.2 Limitations . 85

5.3 Recommendations . 86

Appendices 91

A Python Code 93

Page vii

www.manaraa.com

Page viii

www.manaraa.com

List of Figures

1.1 Relationship between the owner, contractor, and engineer in a traditional

delivery method. 2

1.2 Cash-in Cash-out distribution. 2

1.3 Typical payment method in construction projects. 3

1.4 Example of a time-line showing cash flow in a construction project. 4

1.5 Typical Cumulative Cash-In Cash-Out Curves for a Construction Project. 4

1.6 Flow Chart for Items included in The Price 5

2.1 Multiple Project Planning Phase as shown by Platje et al For A Research

and Development Programme(Platje, Seidel, and Wadman, 1994) 10

2.2 System dynamics model for project cash flow management (Cui, Hastak,

and Halpin, 2010). 15

2.3 Gantt chart of the portfolio studied by Purnus and Bodea (Purnus and

Constanta-Nicoleta, 2015) . 16

2.4 cash flow of the portfolio(Purnus and Constanta-Nicoleta, 2015) 17

2.5 Finance of the portfolio (Purnus and Constanta-Nicoleta, 2015) 17

2.6 Genetic Algorithm levelling algorithm as proposed by Hegazy (Hegazy, 1999) 19

2.7 Optimization model done by Jun et al (Jun and El-Rayes, 2011) 21

2.8 Computational flow for the strength Pareto evolutionary algorithm(Abido

and Elazouni, 2011b) . 23

2.9 Flow chart of the chromosome-repairing GA (Alghazi, Elazouni, and Selim,

2013) . 26

3.1 Flowchart for the Scheduling Front-Run 38

3.2 Flowchart for the Scheduling Back-Run . 39

3.3 Flowchart for The Cashflow calculation . 40

3.4 Example of an optimization trial . 42

3.5 Flowchart of the optimization process . 43

3.6 Graphical User Interface (GUI) on start-up 44

3.7 GUI: File Menu . 45

3.8 GUI: Create New Project Window . 46

ix

www.manaraa.com

3.9 GUI: Create New Activity Window . 46

3.10 GUI: Create New Activity Window . 47

3.11 GUI: Create New Relationship Window . 47

3.12 GUI: Portfolio Menu . 48

3.13 GUI: Projects Menu . 48

3.14 GUI: Activities Menu . 49

3.15 GUI: Calculations Menu . 49

3.16 GUI: Plot Menu . 50

3.17 GUI: Activities Table . 50

3.18 GUI: Portfolio Table . 51

3.19 GUI: Projects Table . 51

3.20 GUI: Gantt Chart . 52

3.21 GUI: Overdraft Plot . 52

3.22 GUI: Optimized Overdraft Plot . 53

3.23 GUI: Optimized Gantt Chart . 53

4.1 Summary of the five portfolios used and their project Gantt charts 58

4.2 Summary of the five portfolios used and their project Gantt charts 59

4.3 Gantt charts for the verification projects 60

4.4 Optimized Gantt charts for the verification projects 61

4.5 Optimization trials for each on the 5 portfolios 62

4.6 Optimized Cash Flow for the Portfolios . 63

4.7 Optimized Overdraft for the Portfolios . 64

4.8 Cost Sensitivity Analysis . 66

4.9 Interest Rate Sensitivity Analysis . 66

4.10 Overlay of The Sensitivity Analysis Results for Interest Rate and Cost . . 67

4.11 Overlay of The Sensitivity Analysis Results for Interest Rate and Cost in

percentage increase . 67

4.12 Histogram of Improvement in NPV for the trials. 69

4.13 CPU Time Vs. Number of Activities + Number of Relationships 71

4.14 Summary of the Portfolio used for validation 73

4.15 Portfolio Gantt Chart . 74

4.16 Portfolio Gantt Chart . 75

4.17 Optimization trials for the validation . 76

4.18 Optimized Cash Flow . 77

4.19 Optimized Overdraft . 78

4.20 Optimized Cash Flow for the validation Portfolio 79

4.21 Optimized Overdraft for the validation Portfolio 80

4.22 Portfolio Gantt Chart . 82

Page x

www.manaraa.com

List of Tables

2.1 Projects and portfolio contract price as studied by Purnus and Bodea (Pur-

nus and Constanta-Nicoleta, 2015) . 16

4.1 Correlations for CPU time tests . 70

4.2 Projects used for the validation . 72

xi

www.manaraa.com

Page xii

www.manaraa.com

List of Abbreviations

ES Early Start

EF Early Finish

LS Late Start

LF Late Finish

OS Optimized Start

OF Optimized Finish

TF Total Float

FF Free Float

PV Present Value

FV Future Value

NPV Net Present Value

i Interest Rate

IRR Internal Rate of Return

MARR Minimum Attractive Rate of Return

xiii

www.manaraa.com

Page xiv

www.manaraa.com

Chapter 1

Introduction

This chapter will provide a background on the topic of cash flow analysis, then it will

provide the problem statement, the scope of work, the methodology followed, and finally

detailed outline of the thesis.

1.1 Background

Just as other businesses operating in any field, a contracting company has to make profit,

which means that it has to have strategic goals that are reasonable in light of future

risks and resource constraints. A construction project is an investment; the contractor is

paying the expenses for the construction and receiving the revenues in form of invoices

from the owner, which means that the contractor will typically be financing the project

in some durations, as an overdraft. Revenues are received for monthly invoices issued

by the contractor. The full revenue, including profit or loss, is finalized with the final

payment from the owner at the end of the project, or , in case of disputes, after the

dispute resolution.

Figure 1.1 shows the relationship between major stakeholders in a construction project

in a traditional delivery method, where the owner enters into contractual agreement with

the contractor, and the engineer (the consultant), separately. There is a non contractual

relationship between the contractor and the engineer, because the engineer supervises and

inspects the work, and also approves drawings, materials, and invoices.

During the project, the contractor pays the expenses of the construction work, which

is the Cash-out from the point of view of the contractor, and, as shown in Figure 1.2,

the contractor receives payments for the work done for each invoice, which is typically

issued monthly. These payments are the Cash-in from the point of view of the contractor.

The amount of payments is calculated as the direct cost multiplied by a mark-up. The

calculation of the price can have many forms and calculation methods. The general idea,

however, is that the price of a product should include the cost of the product, plus an

amount for profit, plus overhead or indirect cost which is the cost of doing business, plus

1

www.manaraa.com

CHAPTER 1. INTRODUCTION

an amount added for risk. This can be summed in what is shown in Figure 1.2, such as

Price = DirectCost + Profit + Contingency + IndirectCostandOverhead.

Payments are received once the invoices issued by the contractor are approved by the

Figure 1.1: Relationship between the owner, contractor, and engineer in a traditional
delivery method.

Figure 1.2: Cash-in Cash-out distribution.

engineer, according to the time bars shown in Figure 1.3 which shows the typical general

case in a project. This process should be agreed and written in the contract between

the employer and the contractor, as well as the time interval between invoices, allowed

time for the engineer to approve, and the deadline for the engineer to pay. This whole

process can be more generalized, as shown in Figure 1.4, where the downpayment and

the retention (if applicable in a project) are included. Due to the nature of the cash

flow in construction projects, there is a delay between the cash out for the contractor,

where payments are made by the contractor for the work being done, and the actual

receipt of payment as per the submitted invoice for that work, which is the cash in. This

duration includes the time for approval of the invoice by the engineer, plus the duration

until the owner sends actual payment. This raises problems concerning liquidity and

profitability because the contractor’s cash flow will most probably be in the red for some

durations during the project. To answer this issue, analysis of the cash-in cash-out curves

Page 2

www.manaraa.com

CHAPTER 1. INTRODUCTION

Figure 1.3: Typical payment method in construction projects.

is required. An example of these curves for a construction project Shown in Figure 1.5, is

. The cash-out is typically an S-shaped curve, and it accounts for the cumulative direct

costs up to a certain point in time. The direct costs mentioned include material, labor

and equipment costs. Therefore, the cumulative cash-out curve at the end of the project

equals the total cost of the project from the point of view of the contractor. The cash-in

curve is a stepped curve where each rise or step in the curve means the contractor has

received payment from the owner. The first step will occur at the start of the project if

there is a down-payment. After that, each step means a payment of an invoice, then ,

at the end of the project the final payment including the retention if applicable. At the

end of the project, the cumulative cash-in should equal the contract price. As shown

in Figure 1.6, the total cost accounts for the direct and indirect costs. The former was

explained earlier as the expenses for labor, material, and equipment. While the indirect

cost is any expense indirectly related to a certain activity but relevant to the site, like

generators or equipment or fuel, and also the overhead of the company, where it might

include rent and expenses for an office or headquarters.

The previously mentioned mark-up percentage is a factor that accounts for the profit and

risk, and may in some cases consider indirect costs. When choosing the mark-up, which is

done during tendering, attention should be given to the companies Minimum Attractive

Rate of Return (MARR), project risks, inflation, currency, finance, ...etc.(Peterson,

2009)

Further analysis of the cash flow curves by calculating the difference between the cash-out

and the cash-in yields the overdraft, which indicates the finance of the project. In other

words, if the cumulative cash-out is higher than the cumulative cash-in at some point

in time, it means that the contractor has financed more cash into the project than the

cash received from invoices and down-payment. The opposite case, where the cumulative

Page 3

www.manaraa.com

CHAPTER 1. INTRODUCTION

Figure 1.4: Example of a time-line showing cash flow in a construction project.

0 2 4 6 8 10 12
0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

Cash-out

Cash-in

TIme (months)

C
as

h

Figure 1.5: Typical Cumulative Cash-In Cash-Out Curves for a Construction Project.

cash-in of higher than the cumulative cash-out, means that the contractor has received

more money that the cost incurred, which should be the case at the end of the project,

provided that the project is profitable.

This sums up the cash flow analysis of a construction project. But, of course, a contracting

company has more than one project in progress or under analysis for possible future

bidding. This introduces the concept of Project Portfolio Management (PPM).

PPM is the centralized management of the enterprise’s company for a group of projects,

this ensures better resource and risk allocation between projects. As analysis at the

project-level may not correctly reflect the risks at the enterprise-level, a multiple projects

approach, however, would be more fit. When analysing the cash flow for a portfolio as a

whole, there can be further detailed analysis of the company’s profitability, liquidity, and

expected risks, which ensures better decisions and strategy by the contractor. (Purnus

Page 4

www.manaraa.com

CHAPTER 1. INTRODUCTION

Figure 1.6: Flow Chart for Items included in The Price

and Constanta-Nicoleta, 2015) (Pinto, 2010).

Page 5

www.manaraa.com

CHAPTER 1. INTRODUCTION

1.2 Problem Statement

The Contractor needs to calculate and analyze the cash flow at the portfolio level. The

analysis at a portfolio level is needed because it aims at the success of the company’s

profile as a whole, while analysis at the project level would aim at the success of each

individual project separately, which may not result in the company’s goals as a whole. This

is especially important when resources are shared between projects and limited.Decisions

based on a portfolio level assessment may, for example, result is a low profit for a project

deliberately, or even a loss, in order to maximize the benefits from another project. Such

analysis should provide information on the overdraft, liquidity needed, and profitability

at the enterprise level to be able to balance the available resources and cash between

multiple projects. This analysis needs to account for inflation and time value of money

for proper prediction of the future cash flow needs. Therefore, there is a need for a

computational model that can provide such analysis as well as optimize the cash flow

request for a portfolio of construction projects.

1.3 Objective

This thesis aims at the analysis and optimization of the cash-flow request for large en-

gineering portfolios from the contractor’s point of view. A computational model, with a

friendly user interface, was created to achieve that. The objective of the optimization is

to maximize the Net Present Value of the cash flow from the point of view of a contractor.

1.4 Scope of Work

The scope of work of this thesis is as follows:

� Develop a computational model for the analysis and optimization of cash flow for

construction engineering portfolios. The model needs to account for:

– Interest Effect

– The time value of money

– Interaction with Oracle Primavera

� Develop a friendly graphical user interface for the model

� Verification the model using sets of randomly generated projects

� Validation the model using an actual real-life portfolio

Page 6

www.manaraa.com

CHAPTER 1. INTRODUCTION

1.5 Research Methodology

This thesis has the following research methodology:

Step 1: Model Development: The model was developed in Python, and it includes

a friendly user interface.

Step 2: Verification: Verification was done to ensure that the model performs cor-

rectly

Step 3: Sensitivity Analysis: A sensitivity analysis was done to analyze the effect of

different parameters on the final results. This was done to ensure that the model

performs correctly as well.

Step 4: CPU Time Test: A test on the CPU time needed to solve portfolios of differ-

ent sizes was done to measure the relation between the CPU time and the complexity

of projects, and to ensure that the model performs within a satisfactory time.

Step 5: Validation: A validation was done using a very large and real construction

portfolio. This was done to ensure that the model performs correctly within a real-

life work-flow. Another validation was also done on an updated project to test the

use of the model for controlling the cash flow of projects.

1.6 Detailed Outline

The synopsis of this work is as follows:

Chapter 1 Introduction This is the introduction, which is the current chapter, has

introduced a background summary of the field targeted. A problem statement and

a scope of work has been declared as well.

Chapter 2 Literature Review This chapter will cover a number of previous research

works in the fields of portfolios, financial analysis, time-cost trade-off, and resource-

based and financial-based scheduling.

Chapter 3 Model Development This chapter shows the development of the model.

Chapter 4 Results and Discussion This chapter shows the results and discussion of

the results of the model. This includes the verification, validation, sensitivity anal-

ysis, and CPU time analysis.

Chapter 5 Conclusion and Recommendations This chapter concludes the thesis,

discusses the main outcomes, and provides some recommendations for future re-

search.

Page 7

www.manaraa.com

CHAPTER 1. INTRODUCTION

Page 8

www.manaraa.com

Chapter 2

Literature Review

The literature review will attempt to cover a range of previous research in the fields of

project portfolio management, and cash-flow and resources analysis and optimization.

2.1 Project Portfolio management

There is a number of research in the field of construction portfolios including: (Platje,

Seidel, and Wadman, 1994) where the concept of portfolio management was introduced

and a practical framework was created; (Han et al., 2004) which focused on the financial

risk management for international portfolios and highlighted its significance to the success

of a contractor on a corporate level, which was also discussed by (Sanchez et al., 2009),

where a research gap in that area, in comparison with project-level risk management, was

highlighted; (Purnus and Constanta-Nicoleta, 2015) presented a complete case study for

cash flow analysis for a portfolio. The studies range between general studies, financial

analysis, risk analysis, project selection, and others. This section will attempt to cover a

selection of them.

2.1.1 Project and Portfolio Planning Cycle: Project-based Man-

agement for the Multi-project Challenge

(Platje, Seidel, and Wadman, 1994) published a paper regarding the challenge of multi-

project management. The research is somewhat inclined towards Research and Devel-

opment projects, but the concepts are also applicable in the construction industry. The

authors present an implementation of the traditional Plan-Do-Check-Action management

cycle in the multiple-projects environment, and a case study on an research and develop-

ment programme in a company, which has the cycle shown Figure 2.1. The cycle is based

on three parties in the organization, which is shown in Figure 2.1. Those are:

9

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

Project Leaders - Project Managers who are responsible for realizing the project

goals and resource allocation.

Department Heads - Resource Managers who are responsible for efficiency and ef-

fectiveness of resources use, as well as quality control.

Management - Programme Directors who are responsible for setting and realizing

of overall programme goals

Figure 2.1: Multiple Project Planning Phase as shown by Platje et al For A Research and
Development Programme(Platje, Seidel, and Wadman, 1994)

The Operation Breakdown Structure (OBS) and the Project Breakdown Structure (PBS)

are therefore interlinked. The cycle is therefore as follows:

Action The management sets the priorities.

Plan The team develops a plan in an iterative process between managment, project

leaders, and department heads, as well as the projects’ sponsors - owners.

Do The team members execute the plan.

Check The team members report to the management for monitoring.

Page 10

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

Action The management takes corrective actions and update as required.

This multi-project approach has the benefit of better resource allocation between projects,

and aims towards organizational goals as a whole, instead of project constrained success.

However, communication is more complicated. Communication and delegation should be

properly and clearly planned.

2.1.2 Multi-criteria Financial Portfolio Risk Management for

International Projects

In a paper by (Han et al., 2004), the authors studied the portfolio financial risk assessment

for international projects. The goal was to introduce a framework of project-selection for

multinational contractors, integrating the risks at the project level and the corporate lev-

els. The authors note that a profit-oriented goal at the project-level does not reflect the

overall risks at the corporate level, and goals of the company. The risks in a portfolio are

distributed, reflecting the state of mind of ”not keeping all of your eggs in one basket”.

The return on the portfolio is a weighted average of the return on the individual projects.

The authors use the Net Present Value (NPV) to reflect the portfolio’s expected return,

where the expected return is a three-point approximation of the worst, normal, and best

expected NPV. The paper uses the Value at Risk (VaR), which is the worst expected loss

of the portfolio within a given confidence interval, in an attempt to capture the risk. The

paper introduces a decision model for portfolio selection for international contractors,

incorporating three parts; financial risk analysis for cash flow analysis and estimating

multi-criteria values such as NPV, Var, and efficiency (ROI), part2 to evaluate and inte-

grate these values, and part 3 for the selection of the optimum portfolio. A case study

was done on a list of 7 projects in 7 different countries, and a set of 5 possible projects

resulted. In summary, the authors conclude that; the NPV, ROI, and VaR can reflect the

benefits and risks of a portfolio; a higher profit ratio dooes not always guarantee a higher

NPV; The NPV is essential and lowered the deviation and the VaR; A company can make

a more inclusive decision based of the selection within a portfolio as a whole rather than

selection of projects on individual basis. The authors note the limitation of this research

is that it is applicable to large international contractors, application to medium to small

contractors is recommended for future research. Another recommendation is to research

into incorporating the risks at the project and the corporate level in a sequential manner,

and the take into consideration current risks to incorporate a contingency against total

risk exposure.

Page 11

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

2.1.3 Risk Management Applied to Projects, Programs, and

Portfolios

(Sanchez et al., 2009) did a thorough literature review paper on risk management at three

levels; Project, Program, and Portfolio. The authors state the risk assessment at those

levels are interdependent and should be co-ordinated. However, in practice, project risk

management has been linked to the individual project level with less attention to the

other levels, which doesn’t reflect the strategic goals of the company. The authors show

that, despite large literature, there is a gap between risk management applied to project

level, and the organizational level. The authors expose some area of open research gaps;

there is a need to implement continuous control and monitoring, this is needed for all

three levels. Another gap in all levels taking into account vulnerabilities. Some other

areas for portfolio and program are adapted from the project level analysis, but research

written specifically for these upper levels is not complete. It should be noted however that

a all-around generic solution may not be satisfactory, as each level’s needs and criteria is

different. Overall, the authors point at several open research areas are the program and

portfolio risk management.

2.2 Cash Flow Analysis

This section shall cover some of the research in the field of financial analysis of construc-

tion projects. There are many research works in that field; to count a few: (Au and

Hendrickson, 1985) which introduces cash-flow analysis and proit calculations for con-

struction projects; (Kaka and Price, 1993) which focused in the modeling and prediction

of the cost curves for contractors, which was also studied by (Hwee and Tiong, 2002)

in combination with risk analysis using a number factors that affect the cash flow; cash

flow forecasting for contractors was also analyzed by (Park, Han, and Russell, 2005);

(Odeyinka and Kaka, 2005) evaluated the contractor’s satisfaction with payment terms,

and their impact on the construction cash flow by conducting surveys; (Khosrowshahi,

2007) continued the research into cash flow forcasting by implementing a decision mak-

ing model for construction cash flow management on the corporate level; (Gorog, 2009)

presented a comprehensive and copyrighted model for the analysis and control of cash

flows for construction project, to be used by contractors; (Cui, Hastak, and Halpin, 2010)

presented a system dynamics model for the project cash flow management, and analyzing

different financial strategies. (Jiang, Issa, and Malek, 2011) presented a Pareto optimality

multi-objective model, for the analysis of cash flows and financial strategies, to be used as

a decision making tool; (Kishore, Abraham, and Sinfield, 2011) used fuzzzy logic systems

for cash flow analysis, for portfolios; (Lee, Lim, and Arditi, 2012) presented a stochas-

tic financing analysis for construction projects, where simulation of projects is done in

Page 12

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

Matlab using stochastic schedules, to handle uncertainties in activity durations and costs,

which was also done by (Maravas and Pantouvakis, 2012); (Huang et al., 2013) produced

a decition making system for financial prequalification of contractors using simulation;

(Zayed and Liu, 2014) studied the complexity of financial management of construction

projects and created a list of the most relevant financial parameters; finally, (Purnus and

Constanta-Nicoleta, 2015) presented a complete insight into cash flow analysis, which

proved to be an excellent reference. This section will attempt to cover a number of them,

2.2.1 Profit Measures for Construction Projects

A paper by (Au and Hendrickson, 1985) proposed cash flow analysis and profit mea-

surement methods for construction projects. This paper was published in 1985, so these

methods are relevantly old and proven. Those are the calculation include the cash in

which is the receipts received by the contractor, the cash out which is the expenses spent

by the contractor on the construction works, and the difference between them which is

the overdraft. The author proposes calculations for to account for the time value of time,

and the cost of finance as shown in the two following equations:

NPVt=0 =
n∑

t=0

At(1 + i)−t (2.1)

NFVt=n =
n∑

t=0

At(1 + i)t (2.2)

where NPV and NFV are the Net Present Value and Net Future Value, respectively, At

is the net cash flow for time period t, and i can be set as the Minimum Attractive Rate

of Return (MARR) for the company.

Furthermore, the Internal Rate of Return (IRR) can be calculated by letting NPV = 0

or NFV = 0 and calculating the i which becomes the IRR. However the author advises

against using the MIRR as an indication of profitability, because the fact that almost all

construction project are heavily dependant of borrowed resources, the MIRR would be

therefore misleading.

The author then presents calculations for overdraft finance, loan interests, and inflation.

Stoppage of work is also considered. The author’s conclusions can be summed up that:

The IRR is not a correct profit measure, the gross profit as measured by the residual

net cash flow at the end of the profit does not take into account the project’s finance,

long-term loans may be a better finance decision than overdraft in long large-scale profits,

and finally sharing of financial risks should be shared by the owner and the contractor

may be less costly to the owner.

Page 13

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

2.2.2 Systems Analysis of Project Cash Flow Management Strate-

gies

A system dynamics approach for cash flow analysis of construction projects was prop-

posed by (Cui, Hastak, and Halpin, 2010). A diagram of this system is shown shown in

Figure 2.2. System dynamics is an approach to model complex systems, focusing on sys-

tem behaviour over time. It has been used to model social, economic, and environmental

systems. The model presented by the authors was tested on a case study, which was a

storage house.

System dynamics proved useful in modelling the dynamic nature of the finance in con-

struction projects. The model of a ”cash balance module”, a ”material disbursement

module”, and a ”project operation module”. The ”cash balance module” is the outer

frame and is connected to the other modules. It includes cash flow from operating and fi-

nancing activities for the period of the project construction. The ”material disbursement

module” includes cash with respect to material invoices, payments, etc. The ”project

operation module” handles rework, errors, changes in scope, etc. Other modules are in-

cluded to handle labour payments, subcontractors payment.

The model can be used to perform what-if analysis using different cash flow management

strategies: Front-end loading strategies include billing of mobilization costs, unbalanced

pricing by overpricing activities done earlier in the project and under pricing later activi-

ties (which is generally unacceptable unless the risk is minor on the employer), and finally

billing of materials prior to their installation (stored on site, in accordance with contract).

Back-end loading strategies include trade credit, where the contractor receives material

from suppliers and pays for them later after a grace period, and subcontracting, where the

contractor assigns part of the work to sub-contractors but pays for them later (according

to the invoices between them) and may even pay the retainage to the subcontractors when

retainage is received from the employer.

A setback of the model, according to the authors, is its uniqueness for different projects,

requiring some modification to the equations used. Also, a software package, VESIM DSS

verision 5.5, was used, so some changes in the software parameters are needed as well.

The author recommends an unbounded software package to for better further research

into the financial impacts of different cash strategies. (Cui, Hastak, and Halpin, 2010)

2.2.3 Analyzing the Impact of Negative Cash Flow on Construc-

tion Performance in The Dubai Area

(Al-Jabouri, Al-Aomar, and Bahri, 2012) presented a study into the patterns and effect

of negative cash flow on construction project in the Dubai Area. The study was done on

Page 14

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

Figure 2.2: System dynamics model for project cash flow management (Cui, Hastak, and
Halpin, 2010).

40 ongoing projects int he Dubai Area, and 4 of them were thoroughly a studied. The

analysis was for the Cash disbursements, cash receipts, and accumulated cash flow. It

was found that there was a negative cash flow for 30 to 70% of the project duration in

the projects studied, and the shortage values ranged between 2 to 4 times the monthly

expenses. The author mentions that some contractors are able to reduce the extent of

negative cash flow by rescheduling cased on cash flow constraint. The author recommends

attention to negative cash flow, cooperation between the contractor, employer, and other

project stakeholders. The author also recommends more practical research using actual

data to better understand the impact of cash flows.

2.2.4 Financial Management of the Construction Projects: A

Proposed Cash Flow Analysis Model at Project Portfolio

Level

Purnus and Bodea (Purnus and Constanta-Nicoleta, 2015) have presented a complete

cash flow analysis as a case study on 5 projects as shown in Table 2.1. The projects have

different start dates as well, as shown in Figure 2.3. The cash flow was calculated and is

shown in Figure 2.4. The projects of 5 infrastructure projects awarded during 2013 and

Page 15

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

Table 2.1: Projects and portfolio contract price as studied by Purnus and Bodea (Purnus
and Constanta-Nicoleta, 2015)
Project Dura-

tion
Contract

Price (Euro)
Project Type Contract

1 21
months

15,518,964 Waste Water Plant FIDIC 1999
Yellow Book

2 14
months

7,027,800 Waste Water Plant FIDIC 1999
Yellow Book

3 24
months

5,527,942 Waste Water Plant FIDIC 1999
Yellow Book

4 14
months

11,687,742 Rehabilitation of a water supply
and waste water network

FIDIC 1999
Red Book

5 11
months

7,475,872 Rehabilitation of a road FIDIC 1999
Red Book

Port-
folio

36
months

47,238,320 - -

2014 to a middle-sized construction company. Projects Their contract conditions were

based on FIDIC 1999 conditions of contract for buildings and engineering work designed

by the employer (Red Book) and FIDIC 1999 Conditions of Contract for Plant and Design-

Build for Electrical and Mechanical Plant (Yellow Book). Due to the overlapping of the

projects, the works done during Ocober 2014 through August 2015 are over 2,000,000

Euros, with a peak of 5,626,187 Euros in July 20. Figure 2.4 shows cumulative cash flow

of the portfolio. This is the combination of cash-in and cash-out where the negative values

indicate the overdraft expected on part of the contractor, and the positive values indicate

the profit. Figure 2.5 shows a cash flow combining finance, income, costs and return of

finance after running multiple scenarios. The goal is to keep that cash flow positive at all

time. The paper highlights the necessity of a detailed cash flow analysis on the portfolio

level, and recommends probabilistic analysis and risk management.

Figure 2.3: Gantt chart of the portfolio studied by Purnus and Bodea (Purnus and
Constanta-Nicoleta, 2015)

Page 16

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

Figure 2.4: cash flow of the portfolio(Purnus and Constanta-Nicoleta, 2015)

Figure 2.5: Finance of the portfolio (Purnus and Constanta-Nicoleta, 2015)

2.3 Optimization and Resource/Finance Based Schedul-

ing

In continuity of the previous section, many researchers studied the optimization of resource

constrained construction projects, or resource-constrained scheduling, or time cost trade-

off. Their are many techniques, methods, and optimization algorithms in this area. This

section will attempt to caver a few. To name some research works in this area; (Li, 1996)

is one of the oldest papers to handle the optimization problem for construction sched-

ules; (Hegazy, 1999) introduced the optimization of resource allocation and leveling using

genetic algorithms; (El-Rayes and Moselhi, 2001) used dynamic programming formula-

Page 17

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

tion to optimum resource usage; (Elazouni and Metwally, 2007) used genetic algorithms

for a time-cost trade-off, (Liu and Wang, 2008) created a model for resource-contrained

scheduling, time-cost trade-off for non-serial repetitive projects was optimized using ge-

netic algorithms and dynamic programing by (Ezeldin and Soliman, 2009), (Liu and

WAng, 2009) studied profit optimization for linear projects; (Elazouni, 2009); (El-Rayes

and Jun, 2009) presented a heuristic method for multi-project finance based scheduling;

(Christodoulou, 2010) presented a new approach for resource-constrained scheduling us-

ing Ant Colony Artificial Agents; (Jun and El-Rayes, 2011) presented a multi-objective

model for resource leveling and allocation; (Lucko, 2011) used singularity functions for

resource optimization; (Abido and Elazouni, 2011b) presented a heuristic for multi project

finance-based scheduling; (Abido and Elazouni, 2011b) used a strength Pareto evolution-

ary algorithm for creating optimum finance-based schedules; (Lucko, 2013) presented a

decision making model using singularity functions and genetic algorithms for financial

decision making, based on the time value of money;; (Alghazi, Elazouni, and Selim, 2013)

presented a continuity into finance-based scheduling using genetic algorithms; (Li and

Li, 2013) used self-adaptive ant colony optimization for time-cost optimization; (Menesi,

Galzarpoor, and Hegazy, 2013) used constrained programming for large scale projects;

(Tang, Liu, and Sun, 2014) continued research into linear scheduling method using con-

strained programming; (Elazouni and Abido, 2014) presented a strength Pareto evolu-

tionary algorithm for the optimization of finance requirements, resource levelingm and

profit; another paper by(Elazouni, Alghazi, and Selim, 2015) presented meta-heuristics

for finance-based scheduling; (Su and Lucko, 2015) used singularity functions for optimum

present value scheduling; (Kim, Walewski, and Cho, 2016) used a modified niched pareto

genetic algorithm for scheduling; finally, (Elbeltagi et al., 2016) used particle swarm for

multi objective schedule optimization.

2.3.1 Optimization of Resource Allocation and Leveling Using

Genetic Algorithms

Hegazy (Hegazy, 1999) presented a paper in 1999 regarding an algorithm for resource

allocation inside a MS Project�. The method relies on the fact that a user can already

input ”priorities” for activities in MS Project�, those can be from lowest to highest, and

are used by the program to prioritize the levelling of resources in a heuristic method. The

algorithm proposed in the paper is a genetic algorithm written in Visual Basic for Appli-

cations (VBA), which is built in the program, to optimize those priorities in order to get

the optimum objective result, which can be combination of minimum project duration,

minimum resource fluctuation, and minimum utilization period of resources. The algo-

rithm starts by initiating the schedule, setting the priority to lowest for all activities, then

Page 18

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

looping on the activities by setting the priority to highest and calculating the objective

functions for each. The genetic algorithm is shown in Figure 2.6. The algorithm proposed

has the advantage of being an add-on to a popular commercial software already used

extensively in the construction industry. However, the processing time was quite high, as

the author reported that four experiments took 50 to 120 minutes, but it should be noted

that it was done on a Pentium 233 MMX Computer. Finally, the author recommends the

application of a similar method using a more efficient programming language.

Figure 2.6: Genetic Algorithm levelling algorithm as proposed by Hegazy (Hegazy, 1999)

Page 19

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

2.3.2 Expanding Finance-Based Scheduling to Devise Overall-

Optimized Project Schedules

Technical notes by (Elazouni and Metwally, 2007) presented the implementation of a

model for finance based scheduling model implemented in Visual Basic. Time-cost trade-

off (TCT) is done, due to the fact that finance based sccheduling results in longer schedules

than unconstrained ones. So the work included TCT analysis, resource allocation, and

resource levelling, acheived through Genetic Algorithms. The model was tested a small 5

activities project.

2.3.3 Heuristic Method for Multi-Project Finance-Based Schedul-

ing

In another paper by (Elazouni, 2009), a heuristic method scheduling multiple project

subject to cash constraints. The proposed heuristic method starts by determining the

cash available to schedule activities during a given period; identifies all possible sched-

ules; determines cash requirements and the impact of project completion, selects the best

schedule; updates the cash flow; proceeds to the next periods, one period at a time till all

activities are scheduled. The method was validated by comparing with previous results

solved by the author using integer programming, and the solutions were very comparable.

The author claims that the advantage of this heuristic method is is flexibility, and ability

to schedule practical-size projects.

2.3.4 Scheduling Resource-Constrained Projects with Ant Colony

Optimization Artificial Agents

Research into scheduling resource-constrained projects using Ant Colony Optimization

(ACO) was done by (Christodoulou, 2010). ACO is a population-based artificial agent

which is inspired by the collective behavior of ants as they optimize their path between

their nest and their food. Ants, in real life, leafe a trail of pheromones on their path, and

this trail steers the suceeding ants in the direction of the stronger pheromone concentra-

tions, so each at has a higher probability of following the path chosen by the majority of

the preceding ants. The ACO method is applied on a resource constrained network, the

effects of resource availability on the critical path and project completion time is exam-

ined. The search for the shortest path, as usual for ACO, is substiduted with the search

for the longest path, which is the Critical Path for the construction schedule, according to

the Critical Path (CPM) method. This is done by treating the duration as negative num-

bers within the ACO. The method is tested on a small project o 17 activities, accuracy

Page 20

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

of 100% for the unconstrained project and a 97% accuracy for the resource constrained

project. The author claims that the ACO method, though iterative, is more suitable in

parallel computing due to its branching nature. Testing into large projects with more

than 1000 activities is in progress.

2.3.5 Multi-objective Optimization of Resource Leveling and

Allocation during Construction Scheduling

(Jun and El-Rayes, 2011) proposed a model for resource optimization implemented into

MS Project �as an extension written in the programming language C].net. A summary

of the optimization model is shown in Figure 2.7. The model can have one of 2 metrics

as objectives: Release and Rehire (RRH), or Resource Idle Days (RID). The decision

variables are the Priority Value (Pn) and Start Day (Sn), the former is used to define the

scheduling sequence of each activity while the latter is used to shift the activity. Each of

those variables, for every activity n is used as a chromosome for the genetic algorithm.

An example run was done using the data tested for validation by Hegazy (Hegazy, 1999)

as described in a previous section.

Figure 2.7: Optimization model done by Jun et al (Jun and El-Rayes, 2011)

Page 21

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

2.3.6 Multi-objective Evolutionary Finance-Based Scheduling:

Entire Projects’ Portfolio and Individual Projects within

a Portfolio

Two papers by the same authors presented a multi-objective scheduling model for port-

folios and individual projects within a portfolio(Abido and Elazouni, 2011a)(Abido and

Elazouni, 2011b). The authors proposed a multi-objective evolutionary scheduling model

using a strength pareto evolutionary algorithm shown in Figure 2.8 and fuzzy logic, and

applied on 5 projects consisted of 25, 30, 225, 240, and 260 activities each. The decision

variables are the start times of the projects’ activities. The formulation of the multiple

objectives include maximizing the profit, and minimizing the duration, financing cost,

and credit.

The algorithm works as follows:

1. Generate an initial population into an empty external Pareto-optimal set.

2. Update the external Pareto-optimal set as follows:

(a) Search the population for the non-dominated solutions and copy them to the

external Pareto set

(b) Search the external Pareto set for the non-dominated solutions and remove all

dominated solutions from the set

(c) Reduce the set by means of clustering in case the number of the solutions

externally stored in the Pareto set exceeds a pre-specified maximum size

3. calculate the fitness values of solutions in both external Pareto set and the popula-

tion as follows:

(a) Assign the strength s for each solution in the external set. The strength is

proportional to the number of solutions covered by that solution.

(b) The fitness of each solution in the population is the sum of the strengths of

all external Pareto solutions which dominate that solution. A small positive

number is added to the resulting sum to guarantee that Pareto solutions are

most likely to be selected by the mating pool.

4. Select two solutions at random out of the combined population and external set

solutions, compare their fitness, select the better one, and copy it to the mating

pool.

5. Generate a random number between 0 and 1 and compare it with the preset crossover

probability, Pc. If r is less than P c, then carry out the crossover operator. Repeat

for mutation operator.

Page 22

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

6. Check for stopping criteria to terminate otherwise copy new population to old pop-

ulation and go to Step 2. In this study, the search will be stopped if the generation

counter exceeds its maximum number.

Figure 2.8: Computational flow for the strength Pareto evolutionary algorithm(Abido and
Elazouni, 2011b)

2.3.7 Improved Genetic Algorithm Finance-Based Scheduling

Alghazi et al (Alghazi, Elazouni, and Selim, 2013) proposed a Genetic Algorithm (GA),

coded in Matlab �. The objective is to tackle the problem of infeasible chromosomes in

resource levelling using GA. The chromosomes are assigned as the start of each activity

in a project, and infeasible chromosomes occur when a chromosome, representing the

start of an activity, creates a conflict with the logical relationships between activities or

Page 23

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

when the resource constraint is not met. The authors presented a chromosome-repairing

GA and stated that stated that it outperformed replaced-chromosome GAs with limited

computational effort. The results were verified using a 10 cash-constrained 30-activity

problems. The flowchart of the chromosome-repairing GA is shown in Figure 2.9.

2.3.8 Fast and Near-Optimum Schedule Optimization for Large-

Scale Projects

Menesi et al. (Menesi, Galzarpoor, and Hegazy, 2013) presented a Constrained Pro-

gramming (CP) Model in an attempt to reach optimum results for large projects quickly.

The authors argue that focus on optimization of large scale projects (more than 1,000

activities) is lacking in research, though most construction projects, in reality, have large

schedules. The model proposed was implemented in IBM ILOG CPLEX Optimization

Studio, and produced near-optimum solutions for 1,000 and 2,000 activities projects in

minutes, performing better than meta-heuristic models such as Genetic Algorithms. The

authors also challenge other researches to improve upon the results with 1 percent devi-

ation for projects consisting of 1,000 activities or more, on a personal computer.

2.3.9 Enhanced Trade-off of Construction Projects: Finance-

Resource-Profit

Another paper by (Elazouni and Abido, 2014), where the Trade-off between finance re-

quirements, resource leveling, and anticipated profit are optimized. A Strength Pareto

evolutionary algorithm (SPEA) is implemented for the trade-off, by solving a a network

of nine multi-mode activities and obtain the associated Pareto-optimal front, which com-

prised fifty solutions, in order to help the decision maker take the best balance. In

addition, a fuzzy logic algorithm was implemented to compare the balance between those

results. The author recommends research into invloving large-sized practival projects

within a portfolio.

2.3.10 Finance-based Scheduling using meta-heuristics: discrete

versus continuous optimization problems

(Elazouni, Alghazi, and Selim, 2015) compared the performance of genetic algorithms

(GA), simulated annealing (SA) and shuffled frog-leaping algorithm (SFLA) in solving

discrete and continuous variable optimization problems of finance-based scheduling. This

Page 24

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

was tested on projects of 30, 120, and 210 activities. SA outperformed the SFLA and

GA in terms of quality of results and computational cost with small networks of 20 activ-

ities, and resulted in the shorted durations for larger networks of 120 and 210 activities.

The author recommends further researchers to use finance-based scheduling, due to its

discrete or continuous nature, to use it as a test bed for testing the performance of new

developments of meta-heuristics.

Page 25

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

Figure 2.9: Flow chart of the chromosome-repairing GA (Alghazi, Elazouni, and Selim,
2013)

Page 26

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

2.4 Outcomes From Literature Review

After conducting the literature review, it was found that the financial analysis on the

portfolio and corporate levels is less tackled by research than analysis on the project

level. It was also agreed among researchers that portfolio level analysis is more indicative

on the success on the corporate level, as it includes multiple projects as a whole, rather

than single projects, which is the case in any construction company because most finance

and resources are shared between projects. It was also found that the time value of money

has a great effect on cash flows, and the two most used parameters to indicate the profit

from a project under that methodology is the Net Present Value, and the Internal Rate

of Return, however, it was found that the Net Present Value is more appropriate. Re-

garding the complexity and size of the projects used as case studies in literature, most of

them were small schedules with a limited number of activities, few papers handled large

projects with up to a thousand activities, which may be impractical in real life because

large projects, and when handled as portfolios, have much higher numbers of activities;

huge schedules are unavoidable when handling large portfolios. Regarding optimization,

there are many studies into different optimization techniques and algorithms. The most

significant one to this thesis in the method used by (Hegazy, 1999), where lags where

added before each activity to allow the model to delay each of them, and optimization

was done resource allocation and leveling; the same concept was adopted in this thesis.

Page 27

www.manaraa.com

CHAPTER 2. LITERATURE REVIEW

Page 28

www.manaraa.com

Chapter 3

Model Development

This Chapter covers the complete model development. This includes the inputs and

outputs. The programing language used, which is Python, is described. The calculations

and process are explained for the scheduling, cash flow analysis, time value of money, and

optimization. Finally, the development of the Graphical User Interface (GUI) is described.

The entire Python Code used is available in Appendix A.

3.1 Assumptions

As expected in any model development, some assumptions must be made. Those are the

following:

� The cost of each activity was assumed to be uniformly distributed along each ac-

tivity’s duration, in contrast real life cases where the cost can be front allocated, or

back allocated, or have any other distribution.

� The costs and expenses that are delayed after an activity or before it, such as in

the case of paying for a supplier after a duration of time from an activity, or before

the activity was neglected. Though they could be added in the model as separate

activities that have delays between them.

� Payment of invoices, retention, and down-payments was assumed to be always on

time, neither late nor early than the contractual time bars. Delays are completely

out of scope.

� The retention was assumed to be paid completely after the Defects Liability Period.

In other situation it could be paid in half at construction completion and half after

the defects liability period.

29

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

3.2 Model Inputs and Outputs

The user is able to input project parameters for the projects, activities, and the relation-

ships between the activities. The inputs are as follows:

� Projects (The interface is shown in Figure 3.8):

Project ID A unique id for each project

Project Name The name or description of the project

Start The start date of the project

Interest The interest percentage used, this can be the Minimum Attractive Rate of

Return (MARR) for the company and should at least account for the expected

Inflation.

Mark-up The mark-up percentage for the project. This should account for profit

and contingency.

Down-payment The down-payment percentage for the project

Invoice Interval The interval between issuing of invoices. This is typically set as

monthly.

Payment Period The time period in days between issuing an invoice and receiving

the payment for that invoice.

Retention The retention percentage for the project. This amount is deducted from

the invoices and received [by the contractor at the end of the project.

Retention Period The time period in days between the end of a project and the

receipt of the retention payment.

� Activities (The interface is shown in Figure 3.10):

Project ID The ID of the project containing the activity. This id should match

the id provided for a project.

Activity ID A unique ID for the activity. The ID should be unique for each

activity within the same project.

Activity Name A name, WBS name, or description for the activity

Duration The duration in days for the activity

Cost The direct cost for the activity

� Relationships (The interface is shown in Figure 3.11):

Page 30

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Project ID The project ID for the project containing the predecessor and successor

activities

Activity1 ID The ID of the predecessor activity

Activity2 ID The ID of the successor activities

Type The type of the relationship. This can be Finish-to-Start, Finish-to-Finish,

Start-to-Start, or Start-to-Finish.

For the outputs, the model was built with a Graphical User Interface (GUI), which will

be discussed thoroughly in a later section. The GUI allows the user to create the elements

of the portfolio with the inputs just mentioned. It also allows the user to preview tables

containing all fields for the elements, whether the portfolio, the projects, the activities,

or the relationships. The GUI can also preview Gantt Charts, cash flow plots, overdrat

plots, for the non-optimized and the the optimized portfolio, with discounted values or

non-discounted values.

In addition, the program can output tables for the portfolio elements including the port-

folio, projects, activities, relationships, cash flow, and trial calculations. The data is

exported in comma separated values (csv) formats and Excel spreadsheet format. The

complete log is exported in a text file. The plots and gantt charts in every mentioned

form is exported in PDF or SVG files, for the pupose of previewing or compiling in a

report, such as this thesis.

3.3 Input from Primavera

Projects can be imported from Otacle’s Primavera. It should be noted that Primavera

is not friendly to add-ins and mods. Another competitor, MS Project, for example, is

more modifiable through the availability of developer tools in Visual Basic for Applications

(VBA) within MS Project and other MS Office tools. However, Primavera is and has been

more dominant in Egypt, so this thesis required the use of Primavera due to the actual

work environment. The original projects used for the validation in this thesis were done in

Oracle Primavera. To import the projects from Primavera into the model, a workaround

is needed; the user has to export the projects from Primaverain spreadsheet xls format,

but first the export options must be edited by the user to add the primary constraint,

primary constraint date, original duration, Budgeted total cost, and the calendar name to

the exported spreadsheet. To import into the mmodel, an algorithm was coded to import

the projects from those xls spreadsheets.

Page 31

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

3.4 Programming Language and Packages Used

The programming language used in this work is Python. Python is a relatively new

programming language. It is a free and open source high-level scripting language. It’s

high-level, dynamic, allows for procedural and object-oriented programming among other

paradigms. It has a community based development environment which resulted in a vast

library of third party packages (Foundation, 2016). Though execution of python code is

normally slower than other counterparts like C++ or JAVA, it is however known to be

relatively easier, more readable, and faster for prototyping. It was ranked as fourth in the

”Top 10 languages in 2015” listing by IEEE (IEEE, 2015). This programming language

was chosen in this work due to its faster prototyping process because relatively simple and

readable. This allowed for better experimentation during building the model with ease

and wasting less time. In other words, It is faster to code in Python in comparison with

other languages. The only disadvantage is that Python, due to the fact that it’s a high-

level language, is normally slower, in means of execution time, than otehr languages like

C or C++ for example, which are lower level and ”closer to the hardware”. Fortunately,

most of the critical packages in Python are coded and optimized in C to lower that effect.

It should be noted that the ”slower time” discussed here is more relevant to real time

systems and computationally demanding softwares, which isn’t too much of a nuisance

within the scope of this thesis. The entire Python Code used is available in Appendix A.

Python has a very good standard library with an excellent documentation and friendly

community of developers. There are a lot of packages built for Python spaning over a

lot of useful functions. Several packages built for the Python environment were used in

this thesis. All of them are open source and easily installed. The packages used outside

of the Python standard library or otherwise notable are listed below, according to their

functions:

Database Management ”sqlite3” was used for the database. It is part of the standard

library, requires instructions syntax similar to MySQL. It has less capabilities than

some other databases but none of those capabilities were required for the purpose

of this work. It is also file-based as opposed to a server database, which limits to

only one connection per database, but allows for higher read-write speeds.

Graphical User Interface ”tkinter” was used because it’s already part of the standard

library, as well as simple and good enough for prototyping

Plotting ”matplotlib” was used for plotting high quality svg files. It is a well known

plotting library in the scientific community and has an excellent range of capabilities

Other external packages ”xlsxwriter” and ”xlrd” are 2 packages that are not included

in the standard library. They were used for reading and writing to excel files. This

Page 32

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

is needed to import excel files exported from primavera, and the standard library

can only manipulate csv files.

3.5 Database

A relational database was used to store and handle data. The database used is Sqlite3,

which is an open source file based database system, readily available in the Python stan-

dard library. Being connected to a single file on the hardisk, unlike MySQL which is a

server, it is faster but allows for one connection at a time. The tables and column fields

are listed below. The column fields can be considered as the variables used in the calcu-

lation, and many of them are the model inputs.

A complete list is as follows:

1. trials

(a) trialid (INT)

(b) initialnpv

(FLOAT)

(c) trialnpv

(FLOAT)

(d) bestnpv

(FLOAT)

2. projects

(a) projectid

(TEXT)

(b) projectname

(TEXT)

(c) start (NUM)

(d) finish (NUM)

(e) duration (INT)

(f) interest (REAL)

(g) markup (REAL)

(h) retentionperiod

(INT)

(i) retention

(REAL)

(j) invoiceinterval

(INT)

(k) paymentperiod

(INT)

(l) downpayment

(REAL)

(m) cost (REAL)

(n) price (REAL)

(o) totalactivities

(INT)

(p) criticalactivities

(INT)

(q) cashinpv (REAL)

(r) cashoutpv

(REAL)

(s) npv (REAL)

(t) maxoverdraftdisc

(REAL)

(u) minoverdraftdisc

(REAL)

(v) cashinpvopt

(REAL)

(w) cashoutpvopt

(REAL)

(x) npvopt (REAL)

(y) maxoverdraftdiscopt

(REAL)

(z) minoverdraftdiscopt

(REAL)

3. activities

(a) projectid

(TEXT)

(b) activityid

(TEXT)

(c) activityname

(TEXT)

(d) duration (INT)

(e) cost (REAL)

(f) es (INT)

(g) ef (INT)

(h) ls (INT)

(i) lf (INT)

(j) ff (INT)

(k) tf (INT)

(l) lag (INT)

(m) os (INT)

(n) of (INT)

Page 33

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

4. relationships

(a) projectid

(TEXT)

(b) activity1id

(TEXT)

(c) activity2id

(TEXT)

(d) type (TEXT)

5. cashflow

(a) date (INT)

(b) projectid

(TEXT)

(c) cashout (REAL)

(d) invoice (REAL)

(e) cashin (REAL)

(f) cashoutcum

(REAL)

(g) cashincum

(REAL)

(h) overdraft

(REAL)

(i) cashoutdisc

(REAL)

(j) cashindisc

(REAL)

(k) cashoutcumdisc

(REAL)

(l) cashincumdisc

(REAL)

(m) overdraftdisc

(REAL)

6. cashflowall

(a) date (INT)

(b) projectid

(TEXT)

(c) cashout (REAL)

(d) invoice (REAL)

(e) cashin (REAL)

(f) cashoutcum

(REAL)

(g) cashincum

(REAL)

(h) overdraft

(REAL)

(i) cashoutdisc

(REAL)

(j) cashindisc

(REAL)

(k) cashoutcumdisc

(REAL)

(l) cashincumdisc

(REAL)

(m) overdraftdisc

(REAL)

7. cashflowopt

(a) date (INT)

(b) projectid

(TEXT)

(c) cashout (REAL)

(d) invoice (REAL)

(e) cashin (REAL)

(f) cashoutcum

(REAL)

(g) cashincum

(REAL)

(h) overdraft

(REAL)

(i) cashoutdisc

(REAL)

(j) cashindisc

(REAL)

(k) cashoutcumdisc

(REAL)

(l) cashincumdisc

(REAL)

(m) overdraftdisc

(REAL)

8. cashflowallopt

(a) date (INT)

(b) projectid

(TEXT)

(c) cashout (REAL)

(d) invoice (REAL)

(e) cashin (REAL)

(f) cashoutcum

(REAL)

(g) cashincum

(REAL)

(h) overdraft

(REAL)

(i) cashoutdisc

(REAL)

(j) cashindisc

(REAL)

(k) cashoutcumdisc

(REAL)

(l) cashincumdisc

(REAL)

(m) overdraftdisc

(REAL)

9. portfolio

Page 34

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

(a) portfolioid

(TEXT)

(b) start (NUM)

(c) finish (NUM)

(d) duration (INT)

(e) numberofprojects

(INT)

(f) numberofactivities

(INT)

(g) cost (REAL)

(h) price (REAL)

(i) cashinpv (REAL)

(j) cashoutpv

(REAL)

(k) npv (REAL)

(l) maxoverdraftdisc

(REAL)

(m) minoverdraftdisc

(REAL)

(n) cashinpvopt

(REAL)

(o) cashoutpvopt

(REAL)

(p) npvopt (REAL)

(q) maxoverdraftdiscopt

(REAL)

(r) minoverdraftdiscopt

(REAL)

10. big

(a) projectid

(TEXT)

(b) activity1id

(TEXT)

(c) activity2id

(TEXT)

(d) type (TEXT)

(e) activity1es (INT)

(f) activity1ef (INT)

(g) activity1ls (INT)

(h) activity1lf (INT)

(i) activity1os (INT)

(j) activity1of (INT)

(k) activity1duration

(INT)

(l) activity2es (INT)

(m) activity2ef (INT)

(n) activity2ls (INT)

(o) activity2lf (INT)

(p) activity2os (INT)

(q) activity2of (INT)

(r) activity2duration

(INT)

3.6 Scheduling Calculations

The scheduling calculations follow a simple Critical Path Method (CPM) technique. The

calculations are done in two steps where one is a forward run and the other is a backward

run. The forward run’s goal is to set the Early Start (ES) and Early Finish (EF) of each

activity in the schedule. A flow chart of the front-run in show, with some simplification,

in Figure 3.1. The explanation of the part were an activity itself is calculated is shown in

Equation 3.1. A summary of the forward run is executed roughly as follows:

1 . Clear a l l prev ious data

2 . For each p r o j e c t :

3 . ES for a c t i v i t i e s with no p r e d e c e s s o r s = Pro j e c t Sta r t

4 . EF for a c t i v i t i e s with no p r e d e c e s s o r s = ES + durat ion

5 . While the re are unscheduled a c t i v i t i e s :

6 . a c t s = a c t i v i t i e s with at l e a s t one c a l c u l a t e d pr edec e s s o r

7 . For each in ac t s :

8 . I f a l l p r e d e c e s s o r s are c a l c u l a t e d :

9 . i f r e l a t i o n s h i p type = FS :

Page 35

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

10 . ES = max(EFpredecessor , c o n s t r a i n t)

11 . i f r e l a t i o n s h i p type = SS :

12 . ES = max(ESpredecessor , c o n s t r a i n t)

13 . i f r e l a t i o n s h i p type = FF:

14 . ES = max(EFpredecessor − durat ion , c o n s t r a i n t)

15 . i f r e l a t i o n s h i p type = SF :

16 . ES = max(ESpredecessor − durat ion , c o n s t r a i n t)

17 . EF = ES + durat ion

18 . Set Pro j e c t F in i sh = max(EF)

In explanation of the preceding pseudo code and Figure 3.1, which provide a very rough

summary of the forward run phase, first, the old calculations, if available, are deleted.

Then a loop is started for each project on its own, which was found to be the better in

computational effort than scheduling the portfolio as a bulk. Activities with no preceding

activities are set at the project start. Then a list of activities with at least one calculated

predecessor is retrieved from the database, then each one in that list is neglected if one

or more of its predecessors is not calculated. This was done to get a balance between

the speed of the database system to retrieve a simple query vs. its slowness to retrieve

multiple sub queries, and the aforementioned power vs. slowness of Python. Lines 9 to

16 are a very logical set of instructions; an activity once its predessors are known, and its

time constraint is already set in the database (Start on or before a date, or finish on or

after a date,.etc), has its ES set according to the relationship type, which can be Finish

to Start, Start to Start, Start to Finish, or Finish to Finish. These logical relationships

are shown in Equation 3.1. And Finally the EF is set as the sum of the start and the

activity’s duration, and the project finish time is set.

ESactivity = MAX OF


EFpredecessor : where relationship type is FS

ESpredecessor : where relationship type is SS

EFpredecessor −DURactivity : where relationship type is FF

ESpredecessor −DURactivity : where relationship type is SF

(3.1)

The next run is the backward run, and its goal is to set the Free Floats (FF) and the

Total Floats (TF) for the activities. The TF is essential to the upcoming optimization

phase. The backward run if very similar in nature to the Front Run. A flowchart of

that process is shown in Figure 3.2. The part where an activity is calculated is shown,

with some simplification, in Figure 3.2. A rough summary of the backward-run process

is shown in the following pseudo-code:

1 . For each p r o j e c t :

2 . LF for a c t i v i t i e s with no s u c c e s s o r = Pro j e c t F in i sh

3 . LS for a c t i v i t i e s with no s u c c e s s o r = LF − durat ion

Page 36

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

4 . While the re are unscheduled a c t i v i t i e s :

5 . a c t s = l i s t o f a c t i v i t i e s with at l e a s t one c a l c u l a t e d s u c c e s s o r

6 . For each in ac t s :

7 . I f a l l s u c c e s s o r are c a l c u l a t e d :

8 . i f r e l a t i o n s h i p type = FS :

9 . LF = min(LSsuccessor , c o n s t r a i n t)

10 . i f r e l a t i o n s h i p type = SS :

11 . LF = min(LSsuccessor + duration , c o n s t r a i n t)

12 . i f r e l a t i o n s h i p type = FF:

13 . LF = min(LFsuccessor , c o n s t r a i n t)

14 . i f r e l a t i o n s h i p type = SF :

15 . LF = min(LFsuccessor + duration , c o n s t r a i n t)

16 . LS = LF − durat ion

17 . TF = LS − ES

To explain Figure 3.2 and the previus pseudo-code. The backward run is very similar to

the forward run. First the activities that have no successors can be calculated, as their

LF = EF = ProjectF inish. The calculations are then looped on each project, and on

each activity. in comparison with the fron-run, the difference is that the ES is replaced

by the LF, and it is set as the minimum of the successors LS or LF, according to the

relationship type. The calculations according to logical relationships are different and are

shown in Equation ??.

LFactivity = MIN OF


LSsuccessor : where relationship type is FS

LSsuccessor + DURactivity : where relationship type is SS

LFsuccessor : where relationship type is FF

LFsuccessor + DURactivity : where relationship type is SF

(3.2)

Page 37

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.1: Flowchart for the Scheduling Front-Run

Page 38

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.2: Flowchart for the Scheduling Back-Run

Page 39

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

3.7 Cash Flow Calculation

Once the schedule has been calculated, the cash flow can be easily calculated. A flowchart

of the process is shown in Figure 3.3, and a pseudo-code summarizing the process is as

follows:

Figure 3.3: Flowchart for The Cashflow calculation

1 . P o r t f o l i o f i n i s h = max(p r o j e c t f i n i s h + r e t e n t i o n per iod)

2 . For each day in range (P o r t f o l i o s t a r t , P o r t f o l i o f i n i s h) :

3 . For each a c t i v i t y :

4 . IF (a c t i v i t y ES < day <= a c t i v i t y EF) :

5 . cahout for t h i s day += a c t i v i t y co s t per day

So, first the range of days is established, which starts at the start of the portfolio and

ends at the finish of the last project plus its retention period. Then a loop is done for

each day in that range, and each activity, to sum the cost per day. Next, to calculate the

cash in, the cash out is summed monthly then assigned as a bulk minus retention and

Page 40

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

down payment, plus the markup, on the day of actual payment. The sum of the cash in

is calculated as shown in Equation 3.3.

CashinPaymentDay =(InvoiceSum ∗Markup)

− (Invoicesum/TotalPrice ∗DownpaymentSum)

− (Invoicesum ∗ TotalPrice/RetentionSum)

(3.3)

Where:

PaymentDay = EndOfinvoiceinterval + PaymentPeriod (3.4)

DownPaymentSum = TotalProjectPrice ∗Downpayment% (3.5)

RetentionSum = TotalProjectPrice ∗Retention% (3.6)

The calculation of the payments follows the agreement that the down payment and

retention values are deducted from the invoices by by a weighted average for each invoice.

Next the down payment with a value as shown in Equation 3.5 is added to on the day

of the start of the project, and the retention with a sum as calculated in Equation 3.6

is added at day when the retention is due for payment. The cash in and the cash out is

now calculated. Next, the cash in cumulative and the cash out cumulative are calculated.

The overdraft is calculated as the difference between them. Simply:

CashInCumulative =

PortfolioF inish∑
PortfolioStart

(CashInday) (3.7)

CashOutCumulative =

PortfolioF inish∑
PortfolioStart

(CashOutday) (3.8)

Overdraft = CashInCumulative− CashOutCumulative (3.9)

3.8 Time Value of Money Calculations

The calculations of the Present Value (PV) and the Net Present Value (NPV) is straight-

forward. Generally, the PV is calculated as shown in Equation 3.10. The PV in the model

is calculated according to Equation 3.12, which was gotten from Equation 3.11. It should

be noted that the PV is calculated at the start of the portfolio, and that the interest rate

is yearly. The idea is that cash loses value with time, meaning that a sum or money has

a different value depending of the time it is calculated, whether due to investment, or

inflation. In the case of a contractor,the value of getting a sum of money soon, is higher

that getting that same amount of money later, for example 1000 pounds having a value,

or a buying power, now, that is higher than it will have in the future. This is the time

Page 41

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

value of money. The final number that measures the value of the portfolio from that point

of view, is the NPV, and is shown in Equation 3.13. The NPV is calculated as the sum

of the discounted overdraft for the whole portfolio, and i is the yearly interest, which is

the inflation rate of the Minimum Attractive Rate of Return (MARR) of the company.

PV =
∑ Cost

(1 + Interest)n
(3.10)

FV = PV ∗ (1 +
i

365
)(Day − PortfolioStart) (3.11)

PV =
FV

(1 +
i

365
)(Day − PortfolioStart)

(3.12)

NPV =

PortfolioF inish∑
PortfolioStart

(PV (Overdraft)day) (3.13)

3.9 Optimization

Optimization is done by first assigning lags to activities. The lags are a duration inserted

to delay each activity for a number of days. The lags are assigned such as:

0 <= Lagi <= TFi (3.14)

It should be noted that each activity can be delayed within its total float (TF). Since

critical activities have a TF of 0 days, it will always be assigned a Lag of 0 days, which

retains its critical state. This can be visualized as shown in Figure 3.4 where activities B

and D where assigned Lags, while Activities A, C, and F are critical activities and were

assigned a Lag of 0 days. Activity E became a critical activity and was assigned a Lag of

0 days as well. The previous part allowed for the creation of an new schedule to be used

Figure 3.4: Example of an optimization trial

as a trial. The schedule then undergoes a front calculation to calculate the OS of each

activity, then a the cash flow is calculated using OS and OF instead of the early starts

(ES) and early finishes (EF) which was previously done to the normal schedule.

Page 42

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.5: Flowchart of the optimization process

The previous part allowed for the creation of an new schedule to be used as a trial.

The schedule then undergoes a front calculation to calculate the new OS for each activity.

This is dependant on the relationships between activities as follows:

OSactivity = MAX OF



ESactivity + Lagactivity

OFpredecessor : where relationship type is FS

OSpredecessor : where relationship type is SS

OFpredecessor −DURactivity : where relationship type is FF

OSpredecessor −DURactivity : where relationship type is SF

(3.15)

What follows is the cash flow calculation just as done previously in the normal cash flow

analysis but using the OS and OF instead of the ES and EF. A new Net Present Value

(NPV) is calculated for the trial, then it is compared with the highest NPV reached in

a previous trial or the initial NPV of the un-optimized schedule if no previous trial was

done. If the NPV is a new highest, the trial is stored in the schedule and a new trial

begins. To sum up, the steps are as follows:

Step 1: If not previously done, the portfolio is calculated for scheduling and cash-flow.

Step 2: The lags are initiated as per Equation 3.14

step 3: The OS and OF of each activity is calculated as per Equation 3.15

Step 4: The cash-flow is calculated using OS and OF

Step 5: Compare new NPV with last best NPV or initial portfolio NPV if this is the

first trial. If current trial is a new optimum: store it, otherwise: discard it.

Page 43

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Step 6: Proceed to Step 2 again if number of trials done is less than the targeted number

of trials. Otherwise, finish.

3.10 Graphical User Interface (GUI)

A GUI was developed, as specified in the Methodology, using a package called ”Tkinter”

from the Python standard library. It can be used to create new projects and activities,

delete them if necessary, display tables containing them, and it can display plots for the

Gantt charts and the cash flow. A screen shot of the GUI on startup is shown in Figure

3.6. The main tool-bar in the top area of the window has seven menus.

Figure 3.6: Graphical User Interface (GUI) on start-up

The fist menu, as shown in Figure 3.7, allows the user to: clear all data; create a new

random portfolio, for testing or used as a demo; import validation portfolio, which is a

large portfolio used for the validation of the model; ”Database Info” will display informa-

tion about the database, number of projects and activities and relationships, and other

useful information; clean database is self explanatory, it will delete create a new empty

database, ”Export” will export spearsheets, csv files, plots in PDF format, and logs in txt

format for the portfolio and the calculations; ”Verify” and ”Validate” buttons are used

to automate the verification and validation process by importing, calculating, optimizing,

and exporting.

Page 44

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.7: GUI: File Menu

The ”Create” menu allows for the creation of new projects, activities, or relationships,

as shown in Figure 3.8. Each button will show its respective item creation window. The

window for the creation of a new project is shown in Figure 3.9, and it requires the project

id, name, start, interest, markup %, downpayment %, Invoice interval in days (the time

duration between invoices), payment period, retention %, and the retention duration. The

window for a new activity is shown in Figure 3.10 and it requires the project for the activ-

ity, the activity ID, name, duration in days, and the cost. Finally, the window for a new

relationship is shown in Figure 3.11 and it required the project id, the preceding activ-

ity id, the successive activity id, and the relationship type, which can be FS, SS, SF, or SS.

Figures 3.13 and 3.14 show the menus that enable the user to see a table of the port-

folio, activities, or the relationships. Each one shows its respective table that lists the

parameters for each item, these include the inputs and outputs. Figure 3.15 shows the

”Calculations” menu, which executes the calculation or the optimization. The calculation

must be done for the portfolio before the optimization, in case the portfolio wasn’t cal-

culated before, otherwise the optimization will fail to run. Finally, Figure 3.16 shows the

plots menu, which enables the user to see many plots for the portfolio, which includes the

Gantt charts, cash flows, and overdrafts, optimized or not optimized, as well as discounted

to their Present Value, or not discounted.

Examples of the previously mentioned tables are shown in Figures 3.17, 3.18, and 3.19

. First, Figure 3.17 shows the table for the activities, which includes all activities in the

Page 45

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.8: GUI: Create New Project Window

Figure 3.9: GUI: Create New Activity Window

portfolio. All parameters and properties for the activities are shown in that table, includ-

ing the IDs, names, durations, CPM calculations, lags from the optimization algorithm,

and others. Similarly, Figures 3.17 and 3.18 show the tables for the portfolio and the

prejects, respectively. Again, the tables include all properties for all items. The tables

shown in the figures can be scrolled vertically and horizontally to see the remaining items

and fields.Also, the user is able to delete selected items

Figure 3.20 shows the Gantt chart for all activities in the portfolio ar their earliest

start state. Activities in red are critical activities. Green activities are non-criticalm and

their total float marjed in a thin blue bar. Arrows mark the relationships between the

activities, where the head of the arrow points to the successor. The location of the arrow

on each activity depends on the type of the relationships, so for example a Finish to Start

will have an arrow from the end of the predecessor to the start of the successor, and others

realtionship types have similar logic.

Page 46

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.10: GUI: Create New Activity Window

Figure 3.11: GUI: Create New Relationship Window

Figures 3.21 and 3.22, show plots of the overdraft vs. time. The first shows the

plot for a random portfolio, while the other shows an overlay of the optimizes overdraft

on the non-optimized for the same portfolio. Finally, Figure 3.23, shows an optimized

Gantt Chart; the thin grey bars span from the Early Start to the Late Finish of each

activity. The activity bars are marked in green or red depending on their criticality. This

visualization ensures that the user can easily understand the effect of the optimization on

the schedule.

Page 47

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.12: GUI: Portfolio Menu

Figure 3.13: GUI: Projects Menu

Page 48

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.14: GUI: Activities Menu

Figure 3.15: GUI: Calculations Menu

Page 49

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.16: GUI: Plot Menu

Figure 3.17: GUI: Activities Table

Page 50

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.18: GUI: Portfolio Table

Figure 3.19: GUI: Projects Table

Page 51

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.20: GUI: Gantt Chart

Figure 3.21: GUI: Overdraft Plot

Page 52

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Figure 3.22: GUI: Optimized Overdraft Plot

Figure 3.23: GUI: Optimized Gantt Chart

Page 53

www.manaraa.com

CHAPTER 3. MODEL DEVELOPMENT

Page 54

www.manaraa.com

Chapter 4

Results and Discussion

This chapter will cover the results of the model. This includes the verification which was

done using randomized sets of portfolios, the sensitivity analysis using the interest rate

and the cost as the parameters under study, a CPU time test. Finally, the results of

the validation, which was done using a real and very large portfolio, are described and

discussed. The entire Python Code used is available in Appendix A.

4.1 Verification

4.1.1 Verification Method

Verification was done using randomly generated sets of portfolios. An algorithm was

written to generate random portfolios with random number of projects, activities, and all

needed parameters. The randomized portfolios then undergo analysis and optimization.

For the sake of verification, the portfolios generated had 3 projects each, where each

project had a random number of activities between 25 to 30 activities. The start of each

project was randomized for up to 300 days from the start of the portfolio. Each activity,

except one activity had a random number of predecessors where the probability of having

one relationship was 75% and the probability of having 2 relationships was 25%, while

the relationship type was equally randomized. Other parameters for duration, costs, and

financial parameters were randomized as well. The stopping criteria is an improvement

of 0.002% on a moving average of the last 3 best trials, or 20 trials with no improvement.

Various other settings were tried as well, including the financial parameters to test the

model, but they are fixed for the examples given in this section. The randomization of

the parameters for the verification created random portfolios with different durations,

number of activities, and relationship types, which tested the performance of the model

thoroughly.

55

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

4.1.2 Verification Results

For the purpose of this thesis, five verification trials are presented. More were done to

and they resulted in the same conclusion. Figure 4.1 shows the 5 portfolios used for the

verification, and as mentioned earlier they are completely randomized. The Gantt charts

of the portfolios are shown in Figure 4.2, showing the start and end of each project in each

of the five portfolios. The activities contained in them as shown in Figure 4.3. As the

portfolios are random, they have a random number of activities, and the criticality ratio

is also variable. Figure 4.4 shows the Gantt chart of the projects, where each project has

a random start dates, duration, and finish dates. The activities contained in the projects,

as shown in Figure 4.3, are also randomized. So, generally this methodology allows for

the rigor testing of the model under different conditions.

Moving fast forward to the optimization, then to the optimized cash flows. Figure 4.5

shows the optimization process in an informative plot where the trial NPV is plotted

against the number of trials. It can be noted that the model converges in all cases. In

some rare cases, the optimum NPV occurs when the activities have an early start state,

therefore the model won’t improve, otherwise the model converges. The optimized cash

flow in shown in Figure 4.6. The optimized overdraft is shown in Figure 4.7.

4.1.3 Verification Discussion

The methodology of the verification allowed for the rigor testing of the model, by creat-

ing custom randomized portfolios to test different costs, interests, number of activities,

different relationship types, etc. The random sets used are shown in Figure 4.1, and were

successfully randomized; the number of activities are different and the number of critical

activities are different for each project. As shown in Figure 4.3, the model successfully

scheduled the activities in each project according to their assigned relationships, which

are indicated by arrows, and as shown in Figure 4.2, the model succeeded in calculating

the start and end of each portfolio according to the scheduling of the activities in them.

Next, for the cash flow analysis, Figures 4.6 and 4.7 show that the calculation of the cash

flow and overdraft, before optimization, was successful; the cash out has an shape similar

to an S-curve, to some extent, which is typical to constriction project, and the end of the

cash-out sums up to the total cost of the portfolio; the cash in has steps matching the

down-payments, invoice payments, and retention receipts at the end of the projects, and

the curve ends with a value equal to the total price of the portfolio; while the overdraft

is correct as it matches the difference between the cash in and the cash out curves, with

an end value that matches the profit from the portfolio.

In the same Figures (4.6 and 4.7), the discounted value, the Present Value (PV), of the

cash flow curves and the overdraft curves are increasingly lower than the Future Value

(FV) curves for each point in time as the time increases. This is due to the power of the

Page 56

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

time value of money because a sum of money will have a lower value as time progresses.

Finally, for the optimization, the trials are shown in Figure 4.5, and Net Present Value

(NPV) which is the objective of the optimization, is converging to a maximized value in

progression with the number of trials. The stopping criteria for the max number of trials,

which was 20 trials, was the deciding factor in the sets under study. The optimized Gantt

charts for the projects are shown in 4.4, where the activity Optimized Start (OS) was set

to a value in their total float, and the relationships between them were also respected. The

effect of the optimization is shown for the cash flow in Figure 4.6 and for the overdraft in

Figure 4.7. The optimization seems to have generally modified the start of the activities

in a way that would balance between receiving cash as early as possible, while at the same

time reducing the peaks in the overdraft. So the NPV, as an indicator, may have solved

multiple objectives. This seems logical because in real life, a contractor would rather

receive cash early, for investment in other projects, and at the same time should attempt

to reduce maximum overdraft to reduce the investment from the company’s resources or

external loans. In overall regarding the optimization, it is successfully converging and

had positive effects on the cash flow of the portfolio. The outcomes of the verification are

satisfying; the cash flows and the overdrafts have typical shapes for construction projects.

Checks on the values were matching. The optimization process converged in all cases.

The optimization seemed to find a balance between getting payments early for maximum

time value of money, and getting a lower negative cash flow, as it is noted that the peaks

in the cash flow are affected by the optimization.

Page 57

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

project1 project2 project3
Projects

0

5

10

15

20

25

N
u
m

b
e
r

o
f

A
ct

iv
it

ie
s

Verification Trial 1 - Summary of Activities
Critical Activities

Non--critical Activities

project1 project2 project3
Projects

0

5

10

15

20

25

N
u
m

b
e
r

o
f

A
ct

iv
it

ie
s

Verification Trial 2 - Summary of Activities
Critical Activities

Non--critical Activities

project1 project2 project3
Projects

0

5

10

15

20

N
u
m

b
e
r

o
f

A
ct

iv
it

ie
s

Verification Trial 3 - Summary of Activities
Critical Activities

Non--critical Activities

project1 project2 project3
Projects

0

5

10

15

20

N
u
m

b
e
r

o
f

A
ct

iv
it

ie
s

Verification Trial 4 - Summary of Activities
Critical Activities

Non--critical Activities

project1 project2 project3
Projects

0

5

10

15

20

N
u
m

b
e
r

o
f

A
ct

iv
it

ie
s

Verification Trial 5 - Summary of Activities
Critical Activities

Non--critical Activities

Figure 4.1: Summary of the five portfolios used and their project Gantt charts

Page 58

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

2016-11-19

2017-06-17

Time

project3

project2

project1

P
ro

je
ct

s

Verification Trial 1 - Portfolio Gantt Chart

2017-02-28

2017-11-25

Time

project3

project2

project1

P
ro

je
ct

s

Verification Trial 2 - Portfolio Gantt Chart

2017-01-29

2017-07-04

Time

project3

project2

project1

P
ro

je
ct

s

Verification Trial 3 - Portfolio Gantt Chart

2017-05-19

2017-10-14

Time

project3

project2

project1

P
ro

je
ct

s
Verification Trial 4 - Portfolio Gantt Chart

2017-05-03

2017-09-19

Time

project3

project2

project1

P
ro

je
ct

s

Verification Trial 5 - Portfolio Gantt Chart

Figure 4.2: Summary of the five portfolios used and their project Gantt charts

Page 59

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

2017-03-11

2017-06-17

Time

A
ct

iv
it

ie
s

Verification Trial 1 - Gantt Chart - project1
Non-critical Activities

Total Float

Critical Activities

2016-11-19

2017-01-15

Time

A
ct

iv
it

ie
s

Verification Trial 1 - Gantt Chart - project2
Non-critical Activities

Total Float

Critical Activities

2017-01-31

2017-04-27

Time

A
ct

iv
it

ie
s

Verification Trial 1 - Gantt Chart - project3
Non-critical Activities

Total Float

Critical Activities

2017-08-31

2017-11-25

Time

A
ct

iv
it

ie
s

Verification Trial 2 - Gantt Chart - project1
Non-critical Activities

Total Float

Critical Activities

2017-07-14

2017-09-15

Time

A
ct

iv
it

ie
s

Verification Trial 2 - Gantt Chart - project2
Non-critical Activities

Total Float

Critical Activities

2017-02-28

2017-05-06

Time

A
ct

iv
it

ie
s

Verification Trial 2 - Gantt Chart - project3
Non-critical Activities

Total Float

Critical Activities

2017-04-25

2017-07-04

Time

A
ct

iv
it

ie
s

Verification Trial 3 - Gantt Chart - project1
Non-critical Activities

Total Float

Critical Activities

2017-01-29

2017-04-01

Time

A
ct

iv
it

ie
s

Verification Trial 3 - Gantt Chart - project2
Non-critical Activities

Total Float

Critical Activities

2017-02-06

2017-04-18

Time

A
ct

iv
it

ie
s

Verification Trial 3 - Gantt Chart - project3
Non-critical Activities

Total Float

Critical Activities

2017-07-17

2017-10-14

Time

A
ct

iv
it

ie
s

Verification Trial 4 - Gantt Chart - project1
Non-critical Activities

Total Float

Critical Activities

2017-05-19

2017-07-15

Time

A
ct

iv
it

ie
s

Verification Trial 4 - Gantt Chart - project2
Non-critical Activities

Total Float

Critical Activities

2017-05-22

2017-07-16

Time

A
ct

iv
it

ie
s

Verification Trial 4 - Gantt Chart - project3
Non-critical Activities

Total Float

Critical Activities

2017-07-30

2017-09-19

Time

A
ct

iv
it

ie
s

Verification Trial 5 - Gantt Chart - project1
Non-critical Activities

Total Float

Critical Activities

2017-05-03

2017-06-21

Time

A
ct

iv
it

ie
s

Verification Trial 5 - Gantt Chart - project2
Non-critical Activities

Total Float

Critical Activities

2017-06-07

2017-08-17

Time

A
ct

iv
it

ie
s

Verification Trial 5 - Gantt Chart - project3
Non-critical Activities

Total Float

Critical Activities

Figure 4.3: Gantt charts for the verification projects

Page 60

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

2017-03-11

2017-06-17

Time

A
ct

iv
it

ie
s

Verification Trial 1 - Optimized Gantt Chart - project1
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2016-11-19

2017-01-15

Time

A
ct

iv
it

ie
s

Verification Trial 1 - Optimized Gantt Chart - project2
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-01-31

2017-04-27

Time

A
ct

iv
it

ie
s

Verification Trial 1 - Optimized Gantt Chart - project3
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-08-31

2017-11-25

Time

A
ct

iv
it

ie
s

Verification Trial 2 - Optimized Gantt Chart - project1
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-07-14

2017-09-15

Time

A
ct

iv
it

ie
s

Verification Trial 2 - Optimized Gantt Chart - project2
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-02-28

2017-05-06

Time

A
ct

iv
it

ie
s

Verification Trial 2 - Optimized Gantt Chart - project3
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-04-25

2017-07-04

Time

A
ct

iv
it

ie
s

Verification Trial 3 - Optimized Gantt Chart - project1
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-01-29

2017-04-01

Time

A
ct

iv
it

ie
s

Verification Trial 3 - Optimized Gantt Chart - project2
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-02-06

2017-04-18

Time

A
ct

iv
it

ie
s

Verification Trial 3 - Optimized Gantt Chart - project3
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-07-17

2017-10-14

Time

A
ct

iv
it

ie
s

Verification Trial 4 - Optimized Gantt Chart - project1
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-05-19

2017-07-15

Time

A
ct

iv
it

ie
s

Verification Trial 4 - Optimized Gantt Chart - project2
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-05-22

2017-07-16

Time

A
ct

iv
it

ie
s

Verification Trial 4 - Optimized Gantt Chart - project3
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-07-30

2017-09-19

Time

A
ct

iv
it

ie
s

Verification Trial 5 - Optimized Gantt Chart - project1
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-05-03

2017-06-21

Time

A
ct

iv
it

ie
s

Verification Trial 5 - Optimized Gantt Chart - project2
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

2017-06-07

2017-08-17

Time

A
ct

iv
it

ie
s

Verification Trial 5 - Optimized Gantt Chart - project3
Activity Range (ES to LF)

Non-critical Activities

Critical Activities

Figure 4.4: Optimized Gantt charts for the verification projects

Page 61

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

0 10 20 30 40 50
Trial #

52.9

53.0

53.1

53.2

53.3

53.4

53.5

53.6

N
P
V

Verification Trial 1 - Optimization trials
Initial NPV

Best NPV

Trial NPV

0 5 10 15 20
Trial #

77.60

77.65

77.70

77.75

77.80

77.85

77.90

N
P
V

Verification Trial 2 - Optimization trials

Initial NPV

Best NPV

Trial NPV

0 10 20 30 40 50
Trial #

62

63

64

65

N
P
V

Verification Trial 3 - Optimization trials

Initial NPV

Best NPV

Trial NPV

0 5 10 15 20 25 30
Trial #

45.40

45.45

45.50

45.55

45.60

N
P
V

Verification Trial 4 - Optimization trials
Initial NPV

Best NPV

Trial NPV

0 10 20 30 40
Trial #

42.40

42.45

42.50

42.55

42.60

42.65

N
P
V

Verification Trial 5 - Optimization trials
Initial NPV

Best NPV

Trial NPV

Figure 4.5: Optimization trials for each on the 5 portfolios

Page 62

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

Dec 2
016

Jan 2017

Feb 2017

Mar 2
017

Apr 2
017

May 2017

Jun 2017

Jul 2
017

Aug 2017

Sep 2017

Time

100

0

100

200

300

400

500

E
G

P

Verification Trial 1 - Cash-flow - Combined
Cash In Cummulative

Cash Out Cummulative

Overdraft

Cash Out Cummulative Discounted

Cash Out Cummulative Discounted

Overdraft Discounted

Optimized Cash In Cummulative

Optimized Cash Out Cummulative

Optimized Overdraft

Optimized Cash Out Cummulative Discounted

Optimized Cash Out Cummulative Discounted

Optimized Overdraft Discounted

Mar 2
017

Apr 2
017

May 2017

Jun 2017

Jul 2
017

Aug 2017

Sep 2017

Oct
2017

Nov 2017

Dec 2
017

Jan 2018

Feb 2018

Time

200

100

0

100

200

300

400

500

E
G

P

Verification Trial 2 - Cash-flow - Combined
Cash In Cummulative

Cash Out Cummulative

Overdraft

Cash Out Cummulative Discounted

Cash Out Cummulative Discounted

Overdraft Discounted

Optimized Cash In Cummulative

Optimized Cash Out Cummulative

Optimized Overdraft

Optimized Cash Out Cummulative Discounted

Optimized Cash Out Cummulative Discounted

Optimized Overdraft Discounted

Feb 2017

Mar 2
017

Apr 2
017

May 2017

Jun 2017

Jul 2
017

Aug 2017

Sep 2017

Time

200

100

0

100

200

300

400

500

E
G

P

Verification Trial 3 - Cash-flow - Combined
Cash In Cummulative

Cash Out Cummulative

Overdraft

Cash Out Cummulative Discounted

Cash Out Cummulative Discounted

Overdraft Discounted

Optimized Cash In Cummulative

Optimized Cash Out Cummulative

Optimized Overdraft

Optimized Cash Out Cummulative Discounted

Optimized Cash Out Cummulative Discounted

Optimized Overdraft Discounted

Jun 2017

Jul 2
017

Aug 2017

Sep 2017

Oct
2017

Nov 2017

Dec 2
017

Time

200

100

0

100

200

300

400
E
G

P
Verification Trial 4 - Cash-flow - Combined

Cash In Cummulative

Cash Out Cummulative

Overdraft

Cash Out Cummulative Discounted

Cash Out Cummulative Discounted

Overdraft Discounted

Optimized Cash In Cummulative

Optimized Cash Out Cummulative

Optimized Overdraft

Optimized Cash Out Cummulative Discounted

Optimized Cash Out Cummulative Discounted

Optimized Overdraft Discounted

Jun 2017

Jul 2
017

Aug 2017

Sep 2017

Oct
2017

Nov 2017

Dec 2
017

Time

200

100

0

100

200

300

400

500

E
G

P

Verification Trial 5 - Cash-flow - Combined
Cash In Cummulative

Cash Out Cummulative

Overdraft

Cash Out Cummulative Discounted

Cash Out Cummulative Discounted

Overdraft Discounted

Optimized Cash In Cummulative

Optimized Cash Out Cummulative

Optimized Overdraft

Optimized Cash Out Cummulative Discounted

Optimized Cash Out Cummulative Discounted

Optimized Overdraft Discounted

Figure 4.6: Optimized Cash Flow for the Portfolios

Page 63

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

Dec 2
016

Jan 2017

Feb 2017

Mar 2
017

Apr 2
017

May 2017

Jun 2017

Jul 2
017

Aug 2017

Sep 2017

Time

100

80

60

40

20

0

20

40

60

80

E
G

P

Verification Trial 1 - Optimized Overdraft Discounted (Comparision)
Overdraft

Optimized Overdraft

Overdraft Discounted

Optimized Overdraft Discounted

Mar 2
017

Apr 2
017

May 2017

Jun 2017

Jul 2
017

Aug 2017

Sep 2017

Oct
2017

Nov 2017

Dec 2
017

Jan 2018

Feb 2018

Time

150

100

50

0

50

100

E
G

P

Verification Trial 2 - Optimized Overdraft Discounted (Comparision)
Overdraft

Optimized Overdraft

Overdraft Discounted

Optimized Overdraft Discounted

Feb 2017

Mar 2
017

Apr 2
017

May 2017

Jun 2017

Jul 2
017

Aug 2017

Sep 2017

Time

200

150

100

50

0

50

100

E
G

P

Verification Trial 3 - Optimized Overdraft Discounted (Comparision)

Overdraft

Optimized Overdraft

Overdraft Discounted

Optimized Overdraft Discounted

Jun 2017

Jul 2
017

Aug 2017

Sep 2017

Oct
2017

Nov 2017

Dec 2
017

Time

200

150

100

50

0

50

100

E
G

P

Verification Trial 4 - Optimized Overdraft Discounted (Comparision)

Overdraft

Optimized Overdraft

Overdraft Discounted

Optimized Overdraft Discounted

Jun 2017

Jul 2
017

Aug 2017

Sep 2017

Oct
2017

Nov 2017

Dec 2
017

Time

200

150

100

50

0

50

100

E
G

P

Verification Trial 5 - Optimized Overdraft Discounted (Comparision)
Overdraft

Optimized Overdraft

Overdraft Discounted

Optimized Overdraft Discounted

Figure 4.7: Optimized Overdraft for the Portfolios

Page 64

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

4.2 Sensitivity Analysis

4.2.1 Sensitivity Analysis Method

A sensitivity analysis was conducted to ensure that the final main result, the Net Present

Value (NPV), is calculated correctly according to other parameters. Two parameters

were chosen, they are the interest rate and the cost, and their implication on the NPV

for a chosen portfolio was tested. The interest was tested from 0 to 50 per cent, with

increments of 2 per cent. This parameter was initialized for each project in the portolio,

and the NPV was calculated for each. While, for the sensitivity analysis of the the cost,

the costs for the activities was incremented for up to 200 per cent of the original cost,

with increments of 10 per cent. This increased the cost of the portfolio and the NPV was

calculated as such.

4.2.2 Sensitivity Analysis Results

The results for the Interest Rate sensitivity analysis is shown in Figure 4.9, the plot shows

a slight second degree curve. while for the sensitivity analysis for the cost which is shown

in Figure 4.8, the plot resulted in a straight first degree line. An overlay of the sensitivity

analysis for the interest rate and the cost combined is shown in 4.10. The same plot but

with the NPV measured in percentage increase, for easier analysis, is shown in Figure

4.11.

4.2.3 Sensitivity Analysis Discussion

The charts obtained from the sensitivity analysis of the cost and interest rate against

the NPV matches expectations perfectly. To begin with the sensitivity analysis for the

interest rate, it was expected to be a curve, because ,as discussed before in Section 3.8,

the NPV is calculated generally as shown in Equation 4.1. So, due to the fact that the

interest is raised to the power of the time period, it has a curve. As for the sensitivity

analysis for the cost, and again in accordance with Equation 4.1, the relationship between

the cost and the NPV is linear, therefore the plot shows a straight line. This concludes

that the model behaves correctly regarding these main parameters.

NPV =
∑ Cost

(1 + Interest)n
(4.1)

Page 65

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

400 450 500 550 600 650 700 750 800
Cost EGP

70

80

90

100

110

120

130

140

150
N

e
t

P
re

se
n
t

V
a
lu

e
 (

N
P
V

)
E
G

P
Cost Sensitivity Analysis

Figure 4.8: Cost Sensitivity Analysis

0 10 20 30 40 50
Interest %

14

12

10

8

6

4

2

0

N
e
t

P
re

se
n
t

V
a
lu

e
 (

N
P
V

)
E
G

P

Interest Rate Sensitivity Analysis

Figure 4.9: Interest Rate Sensitivity Analysis

Page 66

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

0 10 20 30 40 50
Interest %

0

100

200

300

400

500

600

N
e
t

P
re

se
n
t

V
a
lu

e
 (

N
P
V

)
E
G

P

Interest Rate Sensitivity Analysis

Cost Multiplier = 1
Cost Multiplier = 2
Cost Multiplier = 3
Cost Multiplier = 4
Cost Multiplier = 5
Cost Multiplier = 6
Cost Multiplier = 7
Cost Multiplier = 8
Cost Multiplier = 9
Cost Multiplier = 10

Figure 4.10: Overlay of The Sensitivity Analysis Results for Interest Rate and Cost

0 10 20 30 40 50
Interest %

0

200

400

600

800

1000

1200

N
e
t

P
re

se
n
t

V
a
lu

e
 (

N
P
V

)
%

Interest Rate Sensitivity Analysis

Cost Multiplier = 1
Cost Multiplier = 2
Cost Multiplier = 3
Cost Multiplier = 4
Cost Multiplier = 5
Cost Multiplier = 6
Cost Multiplier = 7
Cost Multiplier = 8
Cost Multiplier = 9
Cost Multiplier = 10

Figure 4.11: Overlay of The Sensitivity Analysis Results for Interest Rate and Cost in
percentage increase

Page 67

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

4.3 NPV Improvement Test

4.3.1 NPV Testing Method

This test was done to indicate the impact of the model on the improvement of the NPV.

This was done by using the same methodology for the verification, but repeated or a

number of trials to get different optimized NPVs. Portfolios were generated randomly

with the following conditions: each portfolio had three projects, and each project had

20 to 25 activities. Each project’s start date was set randomly for up to 300 days from

the start of the first project. The interest, markup, and down-payment percentages were

set as 10 to 20%, 15 to 25%, and 15 to 25%, respectively. The payment period and the

retention period were set to 56 and 80 days, respectively. The test was done for 200 trials

and the values were recorded.

4.3.2 NPV Testing Results

This results of the test are shown on Figure 4.12. The x-axis shows the improvement as

NPVOptimized/NPVOriginal. It shows that most of the numbers lie between 0.5% to 1%

improvement. For some projects, that value increased for up to 2.5%.

4.3.3 NPV Testing Discussion

The test showed that the improvement in the NPV that the model can achieve relies

heavily on the nature of the project, this is includes the number of activities, the relation-

ships between them, and the available float, as well as the financial parameters for the

projects. In some projects, the optimized NPV is the original NPV, which means that

the early start and finish state of the activities is the optimum case and no improvement

can be made. Generally, the percentage of improvement for the NPV is small, but for

large projects it is significant as a sum of money.

Page 68

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

1.000 1.005 1.010 1.015 1.020 1.025 1.030
Improvement (NPV_optimized / NPV_original)

0

10

20

30

40

50

60

70

C
o
u
n
t

Improvement Test Histogram

Figure 4.12: Histogram of Improvement in NPV for the trials.

4.4 CPU Time Test

4.4.1 CPU Time Test Method

A test for the CPU time was done to relate it to the size of the portfolios. Trials were done

for random portfolios where each one had 3 projects that contained between 50 and 2000

activities. The stopping criteria was the same as the verification, and the randomization

of the relationships was done in the same way as well. The time to optimize each project

was recorded. In order to compare those time durations with the size of the projects,

Correlation was done between time, number of activities, number of relationships, num-

ber of activities + number of relationships, and the number of activities * number of

relationships.

4.4.2 CPU Time Test Results

The correlation results are shown in Table 4.1. There is a fair and approximately equal

correlation between time and the other variables. A plot between CPU Time Vs. Number

of Activities + Number of Relationships is shown in Figure 4.13. There is a positive

correlation between those variables, but the deviation increases as the number of activities

and relationships increase.

Page 69

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

Table 4.1: Correlations for CPU time tests
Correlation Number of

Activities
Number of
Relation-
ships

Number of
Activities
X Number
of Rela-
tionships

Number of
Activities
+ Number
of Rela-
tionships

Time
(secs)

Number of Ac-
tivities

1 - - - -

Number of Rela-
tionships

0.999 1 - - -

Number of Ac-
tivities X Num-
ber of Relation-
ships

0.987 0.987 1 - -

Number of Ac-
tivities + Num-
ber of Relation-
ships

0.999 0.999 0.987 1 -

Time (secs) 0.656 0.658 0.652 0.657 1

4.4.3 CPU Time Test Discussion

The results obtained from the CPU time test have an expected positive trend; as the

number of activities and relationships increase, the complexity increases and the CPU time

increases. The spread of the time as the complexity increases, however, is a intriguing; it

could be due to the random nature of the inputs, and/or the random nature of the solver.

It is noted that in large projects, such as the one in the validation of this thesis, there

may be multiple complicated relationships for activities, meaning that a single activity

has a high number of relationships. This condition increases the computational effort in

the model heavily. Overall, the CPU time obtained using this model is satisfactory,

Page 70

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

Figure 4.13: CPU Time Vs. Number of Activities + Number of Relationships

4.5 Validation

4.5.1 Validation Method

Validation was done a portfolio of projects, from actual projects by a contractor. General

Information about the projects used are shown in Table 4.2 and Figure 4.15. The portfolio

includes three residential projects in Cairo, under construction at the same construction

company. Two of them are Villas and the third is apartment buildings. Further details

are confidential as per the request of the company. The validation is test of a real and

applicable situation. The portfolio used is a relatively very large one; The total number

of activities is 28,994 activities, distributed as 6489, 8073, and 14432 activities for each

of the projects. The total number of relationships is 69,717 relationship. The stopping

criteria is an improvement of 0.002% on a moving average of the last 3 best trials, or 20

trials with no improvement.

4.5.2 Validation Results

The results for the validation are shows in Figures 4.17, 4.20, and 4.21. The initial NPV

was 432,964,013. The Optimized NPV was 433,150,506. The improvement was 186,493,

Page 71

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

Table 4.2: Projects used for the validation
- Start finish Cost Total Activities

Project 1 03/25/13 03/25/15 102,000,002.57 6,489
Project 2 01/01/14 02/19/16 128,190,586.00 8,073
Project 3 10/11/14 04/27/17 272,000,000.00 14,432

which is an 0.04% improvement from the initial NPV. This result was achieved in 4 hours

and 39 minutes. The validation was redone with different stopping criteria, by increasing

the max number of trials without improvement to 20 trials, but no significant improvement

was achieved. All optimization Plots are shown in the following figures.

4.5.3 Validation Discussion

The schedule was calculated successfully, and the cash flow as well. The cash flow, as

shown in Figure 4.16, has a typical shape of a cash flow for a construction project. The

cash in has steps that follow the invoicing of th three projects. It should be noted, as

mentioned before, that this portfolio is huge and is computationally intensive. Moving on

to the optimization, the cash flow was optimized as shown in Figure 4.17. The number of

trials is small, but a notable improvement in the NPV was achieved. The optimized cash

flow is shown in Figure 4.20, and the optimized overdraft is shown in Figure 4.21. It is

noted that there is a trend that favors early payment, but not excessively, which seems to

be logical, as early payment would make benefit from a higher time value of money, but,

on the other hand, increased cash out in respect to the cash in would result in a harmful

and excessive negative cash flow. So, it seems that some sort of balance is being achieved.

Overall, the main concern after finishing the validation is the long time spent for calcu-

lating the project, in specific in the scheduling process. This is the reason that made

evolutionary algorithms unfavorable due to them required an initial population, which

would in turn require extensive computational power and weeks of computer time. The

use of an algorithm or a heuristic that doesn’t necessarily be deterministic but would have

a satisfactory accuracy would be valuable, especially if it allow for parallel computation.

Page 72

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

P50-BL-R31xls UTC-BL-P43-R33-2xls UTC-BL-P44-R02xls
Projects

0

2000

4000

6000

8000

10000

12000

14000

N
u
m

b
e
r

o
f

A
ct

iv
it

ie
s

Summary of Activities

Figure 4.14: Summary of the Portfolio used for validation

Page 73

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

2013-03-25

2017-05-01

Time

UTC-BL-P44-R02

UTC-BL-P43-R33-2

P50-BL-R31

P
ro

je
ct

s

Portfolio Gantt Chart

Figure 4.15: Portfolio Gantt Chart

Page 74

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

2014
2015

2016
2017

2018

Time

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
G

P

1e9 Cash-flow
Cash In Cummulative

Cash Out Cummulative

Overdraft

Cash Out Cummulative Discounted

Cash Out Cummulative Discounted

Overdraft Discounted

Figure 4.16: Portfolio Gantt Chart

Page 75

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

0 5 10 15 20 25 30
Trial #

50000

100000

150000

200000

N
P
V

+4.33e8 Optimization trials
Initial NPV

Best NPV

Trial NPV

Figure 4.17: Optimization trials for the validation

Page 76

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

2014
2015

2016
2017

2018

Time

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
G

P

1e9 Optimized Cash-flow (Comparision)
Cash In Cummulative

Cash Out Cummulative

Overdraft

Optimized Cash In Cummulative

Optimized Cash Out Cummulative

Optimized Overdraft

Figure 4.18: Optimized Cash Flow

Page 77

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

2014
2015

2016
2017

2018

Time

1

0

1

2

3

4

5

6

E
G

P

1e8 Optimized Overdraft (Comparision)
Overdraft

Optimized Overdraft

Figure 4.19: Optimized Overdraft

Page 78

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

2014
2015

2016
2017

2018

Time

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

E
G

P

1e9 Cash-flow - Combined
Cash In Cummulative

Cash Out Cummulative

Overdraft

Cash Out Cummulative Discounted

Cash Out Cummulative Discounted

Overdraft Discounted

Optimized Cash In Cummulative

Optimized Cash Out Cummulative

Optimized Overdraft

Optimized Cash Out Cummulative Discounted

Optimized Cash Out Cummulative Discounted

Optimized Overdraft Discounted

Figure 4.20: Optimized Cash Flow for the validation Portfolio

Page 79

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

2014
2015

2016
2017

2018

Time

1

0

1

2

3

4

5

6

E
G

P

1e8 Optimized Overdraft Discounted (Comparision)
Overdraft

Optimized Overdraft

Overdraft Discounted

Optimized Overdraft Discounted

Figure 4.21: Optimized Overdraft for the validation Portfolio

Page 80

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

4.6 Validation with Updated Schedule

4.6.1 Validation Method

Another validation was done for a project with an updated schedule. The model was

executed for the updated schedule. The project is a landscape construction project in

Cairo. The schedule has 477 activities. That project start was 2014-03-13 and the Finish

was expected to be 2016-29-07, as the update date for the schedule was May 2016. The

Baseline start and finish were dates were 2014-03-13 and 2014-11-13, respectively. So,

currently time is at large. The % Schedule completion was 94.7% at the update time

in May 2016, and the % schedule completed was 99.2%. The costs of the activities

were changed for confidentiality as requested by the data provider. The Total Cost was

15,644,990 EGP and the Total price was 18,773,988 EGP.

4.6.2 Validation Results and Discussion

The cash flow was calculated for the updated schedule. The resulting cash flow is shown in

Figure 4.22. The curves show an S curve trend. The NPV was found to be 2,570,178 EGP.

It should be noted that the curve begins at a positive value that equals the downpayment

value, and the curve extends till the receipt of the retention. Overall, this validation

showed that the model can handle updated schedules. These can be utilized to to calculate

the actual NPV and Discounted values of the cash flow, which can be used to indicate

the success (or failure) of a project during construction.

Page 81

www.manaraa.com

CHAPTER 4. RESULTS AND DISCUSSION

Jun 2014

Oct
2014

Feb 2015

Jun 2015

Oct
2015

Feb 2016

Jun 2016

Oct
2016

Feb 2017

Jun 2017

Time

0.5

0.0

0.5

1.0

1.5

2.0

E
G

P

1e7 Cash-flow
Cash In Cummulative

Cash Out Cummulative

Overdraft

Cash Out Cummulative Discounted

Cash Out Cummulative Discounted

Overdraft Discounted

Figure 4.22: Portfolio Gantt Chart

Page 82

www.manaraa.com

Chapter 5

Conclusion and Recommendations

This chapter will conclude the thesis regrading the model and Graphical User Interface

(GUI), the optimization, the results of the verification, validation, and CPU time. Finally,

limitations and recommendations for the future research are advised.

5.1 Conclusion

Taking the point of view of the contractor in a construction project, the developed model

and Graphical User Interface (GUI) can be used to perform analysis and optimization of

the cash flow of a portfolio of construction project. The analysis includes the Cash In,

Cash out, and the Overdraft, which are calculated according to the time schedule, the

financial parameters and contractual time bars like the down-payment, retention, invoice

interval,..etc. The time value is also taken into consideration as an interest rate, which

can be the inflation rate or the Minimum Attractive Rate of Return (MARR) for the

contractor. The optimization had the objective of reducing the Net Present Value (NPV)

of the whole portfolio. This had the effect of increasing the profit of the contractor for all

the projects as a whole, taking into effect the time value of money. Excessive overdraft is

also reduced as an effect. The model achieved its targeted scope.

5.1.1 Model and GUI

The scope was achieved by creating a model that can do the analysis and optimization

of construction portfolios. Python proved to be a good choice for prototyping and fast

implementation. The computational time wasn’t greatly affected, since most of the pack-

ages used are coded in C. A friendly Graphical User Interface was also created. It allows

the user to create a portfolio, projects in it, activities in the project, and relationships

between the activities. The user can also modify financial parameters and contractual

time bars.

83

www.manaraa.com

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS

5.1.2 CPU Time

A test for the CPU time was done and described in Section 4.4. There is a fair correlation

between the CPU time and the number of projects of course. But it seems that the CPU

time is greatly affected by the structure of the projects; projects where there are several

complicated relationships between activities, especially where one activity has multiple

relationships, seem to be more computationally costly, in addition to there large size.

This was more apparent in the validation. Generally, the CPU time is satisfactory, for

small and large projects.

5.1.3 Verification

The verification was described in Section 4.1.1. The trials were done for random projects

to verify the results and effectiveness of the algorithm. The model converged in all cases.

It should be noted that in some cases, the optimum NPV for the project would occur

when all activities start as soon as possible, meaning the optimum start is the early start.

It should also be noted that the user should not create relationships between activities

that are cyclic, meaning that, for example, 2 activities cannot be the predecessors of each

other, and the same applies to longer chains of activities. Otherwise the model will keep

calculating in an endless loop.

5.1.4 Validation

The validation was done for a large portfolio of real projects from a single construction

company. The portfolio had, approximately, 29 thousand activities with 70 thousand

relationships between them. Further details were described in 4.5.1. The model converged

in a relatively satisfactory time, compared to the size of the portfolio. It was noticed that

the bottleneck for the model is the calculation of the activity start and ends. This due

to the large number of activities and relationships, in addition to the fact that some

activities had multiple relationships that connected to many activities and complicated

the calculations.

5.1.5 Optimization Algorithm

The verification and the validation shows that the bottleneck was the calculation of the

activities’ start and finish dates, especially when the relationships connect too many

activities, which complicates the computations and makes the whole process slower. Due

to this issue and the very large number of variables, as shown in the validation, the use

of evolutionary algorithms (EA) is unfeasible; the model would be unable to create a first

population for the EA in a satisfactory time. The optimization technique used in this

model is a form of Brute Forcing, as discussed in 3.9, and it proved to be satisfactory for

Page 84

www.manaraa.com

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS

a large project, as shown in the validation, and also for smaller projects, as shown in the

verification.

5.1.6 Sensitivity Analysis

A sensitivity analysis was performed for the model, taking into consideration the Interest

Rate and Cost parameters’ effect on the Net Present Value (NPV). The results showed

consistency with the equations provided. The increase in the interest rate increased the

NPV with a curved shape while the increase in the cost increased the NPV linearly. This

behavior was consistent with the the given equations and the behavior of the time value

of money.

5.2 Limitations

Due to assumptions that were utilized in the model development, the limitations are:

� The cost of each activity was assumed to be uniformly distributed along each ac-

tivity’s duration, in contrast real life cases where the cost can be front allocated, or

back allocated, or have any other distribution. These options should be added to

simulate real situations.

� The costs and expenses that are delayed after an activity or before it, such as in

the case of paying for a supplier after a duration of time from an activity, or before

the activity was neglected. Though they could be added in the model as separate

activities that have delays between them.

� Payment of invoices, retention, and down-payments was assumed to be always on

time, neither late nor early than the contractual time bars. Delays are completely

out of scope. This limitation could be fixed by adding the the model the liabilities

and delay penalties. This could result in situations where, after optimizations, delay

damages will be paid, but the profit is higher.

� The retention was assumed to be paid completely after the Defects Liability Period.

In some situations, however, it could be paid in half at construction completion and

half after the defects liability period.

� Financial situations for loans, bonds, procurement agreements, and similar items

were not considered, though they can be added as separate activities with their

costs.

� Exhaustive numeration was used for the optimization, though it leads to a global

near-optimum solution, it is slower and more computationally cumbersome than

other higher-level methods, such as evolutionary algorithms.

Page 85

www.manaraa.com

CHAPTER 5. CONCLUSION AND RECOMMENDATIONS

� There is a bottleneck when calculating large schedules, due to their size and com-

plexity, and it greatly affects optimization process as well, leading to long calculation

time.

� The options included in the model for the payments, invoicing, advanced payment,

and retention, are limited.

� The model doesn’t do resource leveling.

5.3 Recommendations

Researchers in this topic are advised to notice the limitations of the model. The most

important limitation is the bottleneck for the optimization of large projects in the pro-

posed model, in the calculation of the start and finish times for activities, which increases

the overall time the optimizations significantly because optimization trials require re-

calculation of the schedule. Practical schedules, specially for large construction portfolios,

are expected to have thousands of activities, just as the one used for the validation, there-

fore a faster algorithm is needed, at least for the sake of optimization. This algorithm

doesn’t have to be deterministic or very accurate, but it needs to be accurate enough

and much quicker in order to allow for faster optimization or the use of more complicated

optimization algorithms, followed by an accurate calculation of the resulting model after

optimization.

Page 86

www.manaraa.com

Bibliography

Abido, M. A. and Ashraf M. Elazouni (2011a). “Multiobjective Evolutionary Finance-

Based Scheduling: Entire Projects’ Portfolio”. In: Journal of Computing in Civil En-

gineering 25.1, pp. 85–97.

Abido, Mohammad and Ashraf Elazouni (2011b). “Multiobjective Evolutionary Finance-

Based Scheduling: Individual Projects Within a Portfolio”. In: Automation in Con-

struction 20, pp. 755–766.

Al-Jabouri, Khalil I., Raid Al-Aomar, and Mohammed E. Bahri (2012). “Analyzing The

Impact of Negative Cash Flow on Construction Performance in the Dubai Area”. In:

Journal of Management in Engineering 28.4, pp. 382–390.

Alghazi, Anas, Ashraf Elazouni, and Shokri Selim (2013). “Improved Genetic Algorithm

for Finnance-Based Scheduling”. In: Journal of Computing in Civil Engineering 27.4,

pp. 379–394.

Au, Tung and Chris Hendrickson (1985). “Profit Measures for Construction Projects”. In:

Journal of Construction Engineering and Management 112, pp. 273–286.

Christodoulou, Symeon (2010). “Scheduling Resource-Constrained Projects with Ant Colony

Optimmization Artificial Agents”. In: Journal of Computing in Civil Engineering 24.1,

pp. 45–55.

Cui, Qingbin, Makarand Hastak, and Daniel Halpin (2010). “Systems analysis of project

cash flow management strategies”. In: Construction Management and Economics 28.4,

pp. 361–376.

El-Rayes, Khaled and Dho Heon Jun (2009). “Optimization Resource Leveling in Con-

struction Projects”. In: Journal of Construction Engineering and Management 23.3,

pp. 1172–1180.

El-Rayes, Khaled and Osama Moselhi (2001). “Optimization Resource Utilization for

Repetitive Construction Projects”. In: Journal of Construction Engineering and Man-

agement, pp. 18–27.

Elazouni, Ashraf (2009). “Heuristic Method for Multi-project Fianance-based Schedul-

ing”. In: Construction Management and Economics 27.2, pp. 199–211.

Elazouni, Ashraf and M. A. Abido (2014). “Enhanced Trade-off of Construction Projects:

Finance-Resource-Profit”. In: Journal of Construction Engineering and Management

140.9, p. 04014043.

87

www.manaraa.com

BIBLIOGRAPHY

Elazouni, Ashraf, Anas Alghazi, and Shokri Z. Selim (2015). “Finance-based Scheduling

Using Meta-heuristics: Descrete versus continious optimization problems”. In: Journal

of Financial Management of Property and Contruction 20.1, pp. 85–104.

Elazouni, Ashraf M. and Fikry G. Metwally (2007). “Expanding Finance-Based Schedul-

ing to Devise Overall-Optimized Project Schedules”. In: Journal of Construction En-

gineering and Management 133.1, pp. 86–90.

Elbeltagi, Emad et al. (2016). “Overall Multiobjective Optimization of Construction

Projects Scheduling Using Particle Swarm”. In: Journal of Financial Management

of Property and Contruction 23.3, pp. 265–282.

Ezeldin, A. Samer and Ahment Soliman (2009). “Hybrid Time-Cost Optimization of Non-

serial Repetitive Construction Projects”. In: Journal of Construction Engineering and

Management 135.1, pp. 42–55.

Foundation, Python Software (2016). The Official Home of The Python Programming

Language. url: https://www.python.org/.

Gorog, Mihaly (2009). “A Comprehensive Model for Planning and Controlling Contractor

Cash-flow”. In: International Journal of Project Management 27, pp. 481–492.

Han, Seung H. et al. (2004). “Multicriteria Financial Portfolio Risk Mangement for Inter-

national Projects”. In: Journal of Construction Engineering and Management 130.3,

pp. 346–356.

Hegazy, Tarek (1999). “Optimization of Resource Allocation And Leveling Using Ge-

netic Algorithms”. In: Journal of Construction Engineering and Management 125.3,

pp. 167–175.

Huang, Wen-Haw et al. (2013). “Contractor Financial Prequalification Using Simulation

Method Based on Cash Flow Model”. In: Autimation in Construcion 35, pp. 254–262.

Hwee, Ng Ghim and Robert L. K. Tiong (2002). “Model on Cash Flow Forecasting and

Risk Analysis for Contracting Firms”. In: Journal of Project Managemenr 20, pp. 351–

363.

IEEE (2015). The 2015 Top Ten Programming Languages. url: http://spectrum.ieee.

org/computing/software/the-2015-top-ten-programming-languages.

Jiang, Aiyin, Raja R. A. Issa, and Maged Malek (2011). “Construction Project Cash Flow

Planning Using the Pareto Optimality Efficiency Network Model”. In: Journal of Civil

Engineering and Management 17.4, pp. 510–519.

Jun, Dhoo Heon and Khaled El-Rayes (2011). “Multiobjective Optimization of Resource

Leveling and Allocation during Construction Scheduling”. In: Journal of Construction

Engineering and Management 137.12, pp. 1080–1088.

Kaka, A. P. and A. D. F. Price (1993). “Modelling Standard Cost Commitment Curves for

Contractors’ Cash Flow Forecasting”. In: Construction Management and Economics

11.4, pp. 271–283.

Page 88

www.manaraa.com

BIBLIOGRAPHY

Khosrowshahi, F. (2007). “A Decision Support Model for Construction Cash Flow Man-

agement”. In: Computer-Aided Civil and Inffrastructure Engineering 22, pp. 527–539.

Kim, Kyungki, John Walewski, and Yong K. Cho (2016). “Multiobjective Construction

Schedule Optimization Using modified Niched Paret Genetic Algorithm”. In: Journal

of Management in Engineering 32.2, p. 04015038.

Kishore, Varun, Dulcy M. Abraham, and Joseph V. Sinfield (2011). “Portfolio Cash As-

sessment Using Fuzzy Systems Theory”. In: Jounal of Construction Engineering and

Management 137.5, pp. 333–343.

Lee, Dong-Eun, Tae-Kyung Lim, and David Arditi (2012). “Stochastic Project Financ-

ing Analysis System for Construction”. In: Journal of Construction Engineering and

Management 138.3, pp. 376–389.

Li, Huimin and Peng Li (2013). “Self-Adaptive Ant Colony Optimization for Construction

Time-Cost Optimization”. In: Kybernetes 24.8, pp. 1181–1194.

Li, Shirong (1996). “New Approach for Optimization of Overall Construction Schedule”.

In: Journal of Construction Engineering and Management 122.1, pp. 7–13.

Liu, Sh-Shun and Chang-Jung WAng (2009). “Two-Stage Profit Optimization Model for

linear Scheduling Problems Considering Cash Flow”. In: Construction Management

and Economics 27.11, pp. 1023–1037.

Liu, Shu-Shun and Chang-Jung Wang (2008). “Resource-Constrained Construction Project

Scheduling Model for Profit Maximization Considering Cash Flow”. In: Automation

in Construction 17, pp. 966–974.

Lucko, Gunnar (2011). “Integrating Efficiant Resource Optimization and Linear Schedule

Analysis with Singularity Functions”. In: Journal of Construction Engineering and

Management 137.1, pp. 45–55.

Lucko, GUnnar (2013). “Supporting Financial Decision-Making Based on Time Value of

Money with Singularity Finctions in Cash Flow Models”. In: Construction Manage-

ment and Economics 31.3, pp. 238–253.

Maravas, Alexander and John Paris Pantouvakis (2012). “Project Cash Flow Analysis in

The Presence of Uncertainty in Activity Duration and Cost”. In: International Journal

of Project Management 30, pp. 374–384.

Menesi, Wail, Behrooz Galzarpoor, and Tarek Hegazy (2013). “Fast and New-Optimum

Schedule Optimization for Large-Scale Projects”. In: Journal of Construction Engi-

neering and Management 139.9, pp. 1117–1124.

Odeyinka, Henry A. and Ammar Kaka (2005). “An Evaluation of Constractors’ Satis-

faction With Payment Terms Influencing Construction Cash Flow”. In: Journal of

Financial Management of Property and Construction 30.3, pp. 171–180.

Park, Hyung K., Seung H. Han, and Jeffrey S. Russell (2005). “Cash Flow Forecasting

Model for General Contractors Using Moving Weights of Cost Categories”. In: Journal

of Management in Engineering 21.4, pp. 164–172.

Page 89

www.manaraa.com

BIBLIOGRAPHY

Peterson, Steven J. (2009). Construction Accounting and Financial Management. Second.

Pearson.

Pinto, Jeffrey K. (2010). Project Managment: Acheiving Competitive advantage. Second.

Prentice Hall.

Platje, Adri, Herald Seidel, and Spike Wadman (1994). “Project and Portfolio Planning

Cycle”. In: International Journal of Project Management 7.12, pp. 100–106.

Purnus, Augustin and Bodea Constanta-Nicoleta (2015). “Financial Management of the

Construction Projects: A proposed Cash Flow Analysis Model at Project Portfolio

Level”. In: Organization, Technology and Managment in Construction 7.1, pp. 1217–

1227. url: http://www.grad.hr/otmcj/clanci/vol%207_1/OTMC_6.pdf (visited on

01/28/2016).

Sanchez, Hynuk et al. (2009). “Risk Management Applied to Projects, Programs, and

Portfolios”. In: International Journal of Managing Projects in Business 2.1, pp. 14–

35.

Su, Yi and Gunnar Lucko (2015). “Optimum Present Value Scheduling Based on Synthetic

Cash Flow Model with Singularity Functions”. In: Journal of Construction Engineer-

ing and Management 141.11, p. 04015036.

Tang, Yuanjie, Rengkui Liu, and Quanxin Sun (2014). “Two-Stage Scheduling Model for

Resource Leveling of Linear Projects”. In: Journal of Construciton Engineering and

Management 140.7, p. 04014022.

Zayed, Tarek and Yaqiong Liu (2014). “Cash Flow Modeling for Construction Projects”.

In: Engineering, Construction, and Architectural Management 21.2, pp. 170–189.

Page 90

www.manaraa.com

Appendices

91

www.manaraa.com

www.manaraa.com

Appendix A

Python Code

93

www.manaraa.com

1 '''
2 Cash Flow Optimmization for Construction Engineering Portfolios
3 Author: Gasser Galal Ali
4 This code was developped for the purpose of the
5 fullfilment of the requirements of the thesis for the degree
6 of Master of Science in Construction Engineering at The
7 American University in Cairo.
8 This code may not be fully or partially used without written
9 approval of the author
10
11 '''
12
13 import sqlite3, re, os, datetime, functools, math, random, sys, webbrowser, csv
14 import xlsxwriter, xlrd
15 import matplotlib.pyplot as plt
16 import tkinter as tk
17 import tkinter.ttk as ttk
18
19 def log(text):
20 global log_file_name
21 print(text)
22 f = open(log_file_name,'a+')
23 f.write(text + '\n')
24 f.close()
25
26 def pause():
27 input("Paused. Press Enter to resume.")
28 print("Resuming...")
29
30 def adddays(date, days, calendar):
31 # Function to add or subtract days from a date with days off included, the

daysoff should be a tuple of 0 to 6 where 0 is Monday
32 condition = True
33 counter = 0
34 output = date
35 if calendar == None or '7d' in calendar.lower() or '7 d' in calendar.lower():
36 listofdaysoff = ()
37 elif '6d' in calendar.lower() or '6 d' in calendar.lower():
38 listofdaysoff = (4,)
39 elif '5d' in calendar.lower() or '5 D' in calendar.lower():
40 listofdaysoff = (4,5)
41 else:
42 print(' [!] unrecognized calendar :' + calendar)
43 listofdaysoff = ()
44 while condition and days != 0:
45 if days > 0:
46 output += datetime.timedelta(1)
47 else:
48 output += datetime.timedelta(-1)
49 if output.weekday() not in listofdaysoff:
50 counter += 1
51 if counter == abs(days):
52 condition = False
53 return output
54
55 def new_database(): # Deploys a new database file. DELETES OLD FILE IF FOUND
56 log('Deploying Database')
57 global conn
58 conn.commit()
59 conn.close()
60 if os.path.exists(database_file_name):
61 os.remove(database_file_name)
62 log(" - Removed old file")
63 conn = sqlite3.connect(database_file_name)
64 conn.execute("PRAGMA default_cache_size = 500000;")
65 conn.commit()
66 conn.execute("CREATE TABLE projects (projectid TEXT UNIQUE NOT NULL, projectname

TEXT,start DATE, finish DATE, duration INT, interest FLOAT, markup FLOAT,

- 1 -

www.manaraa.com

retentionperiod INT, retention FLOAT, invoiceinterval INT, paymentperiod INT,
downpayment FLOAT, cost FLOAT, price FLOAT, totalactivities INT,
criticalactivities INT, cashinpv FLOAT, cashoutpv FLOAT, npv FLOAT,
maxoverdraftdisc FLOAT, minoverdraftdisc FLOAT, cashinpvopt FLOAT, cashoutpvopt
FLOAT, npvopt FLOAT, maxoverdraftdiscopt FLOAT, minoverdraftdiscopt FLOAT);")

67 conn.execute("CREATE INDEX projectsindex ON projects (projectid);")
68 conn.execute("CREATE TABLE activities (projectid TEXT, activityid TEXT,

activityname TEXT, duration INT, cost FLOAT, es INT, ef INT, ls INT, lf INT, ff
INT, tf INT, lag INT, os INT, of INT, primaryconstraint TEXT,
primaryconstraintdate DATE, calendar TEXT);")

69 conn.execute("CREATE INDEX activitiesindex ON activities (activityid);")
70 conn.execute("CREATE TABLE relationships (projectid TEXT, activity1id TEXT,

activity2id TEXT, type TEXT, rlag INT);")
71 conn.execute("CREATE INDEX relationshipsindex ON relationships

(projectid,activity1id,activity2id,type);")
72 conn.execute("CREATE TABLE cashflow (date INT, projectid TEXT, cashout FLOAT,

invoice FLOAT, cashin FLOAT, cashoutcum FLOAT, cashincum FLOAT, overdraft FLOAT,
cashoutdisc FLOAT, cashindisc FLOAT, cashoutcumdisc FLOAT, cashincumdisc FLOAT,
overdraftdisc FLOAT)")

73 conn.execute("CREATE INDEX cashflowindex ON cashflow (date, projectid);")
74 conn.execute("CREATE TABLE cashflowall (date INT, projectid TEXT, cashout FLOAT,

invoice FLOAT, cashin FLOAT, cashoutcum FLOAT, cashincum FLOAT, overdraft FLOAT,
cashoutdisc FLOAT, cashindisc FLOAT, cashoutcumdisc FLOAT, cashincumdisc FLOAT,
overdraftdisc FLOAT)")

75 conn.execute("CREATE INDEX cashflowallindex ON cashflowall (date, projectid);")
76 conn.execute("CREATE TABLE cashflowopt (date INT, projectid TEXT, cashout FLOAT,

invoice FLOAT, cashin FLOAT, cashoutcum FLOAT, cashincum FLOAT, overdraft FLOAT,
cashoutdisc FLOAT, cashindisc FLOAT, cashoutcumdisc FLOAT, cashincumdisc FLOAT,
overdraftdisc FLOAT)")

77 conn.execute("CREATE INDEX cashflowoptindex ON cashflowopt(date, projectid);")
78 conn.execute("CREATE TABLE cashflowallopt (date INT, projectid TEXT, cashout

FLOAT, invoice FLOAT, cashin FLOAT, cashoutcum FLOAT, cashincum FLOAT, overdraft
FLOAT, cashoutdisc FLOAT, cashindisc FLOAT, cashoutcumdisc FLOAT, cashincumdisc
FLOAT, overdraftdisc FLOAT)")

79 conn.execute("CREATE INDEX cashflowoptallindex ON cashflowallopt (date,
projectid);")

80 conn.execute("CREATE TABLE portfolio (portfolioid TEXT UNIQUE NOT NULL, start
DATE, finish DATE, duration INT, numberofprojects INT, numberofactivities INT,
cost FLOAT, price FLOAT, cashinpv FLOAT, cashoutpv FLOAT, npv FLOAT,
maxoverdraftdisc FLOAT, minoverdraftdisc FLOAT, cashinpvopt FLOAT, cashoutpvopt
FLOAT, npvopt FLOAT, maxoverdraftdiscopt FLOAT, minoverdraftdiscopt FLOAT)")

81 conn.execute("INSERT INTO portfolio (portfolioid) VALUES ('portfolio');")
82 conn.execute("CREATE TABLE trials (trialid INT, initialnpv FLOAT, trialnpv

FLOAT, bestnpv FLOAT)")
83 conn.execute("CREATE INDEX trialindex ON trials(trialid);")
84 conn.execute("CREATE view big AS SELECT relationships.*, activities1.es AS

activity1es, activities1.ef AS activity1ef, activities1.ls AS activity1ls,
activities1.lf AS activity1lf, activities1.os AS activity1os, activities1.of AS
activity1of, activities1.duration AS activity1duration, activities2.es AS
activity2es, activities2.ef AS activity2ef, activities2.ls AS activity2ls,
activities2.lf AS activity2lf, activities2.os AS activity2os, activities2.of AS
activity2of, activities2.duration AS activity2duration FROM relationships INNER
JOIN activities AS activities1 ON relationships.projectid =
activities1.projectid AND relationships.activity1id = activities1.activityid
INNER JOIN activities AS activities2 ON relationships.projectid =
activities2.projectid AND relationships.activity2id = activities2.activityid;")

85 conn.commit()
86 log(' - Done')
87
88 def print_table(name): # Prints a table from the database, input "all" for all tables
89 if name in ['all','All','ALL']:
90 tables = [a for a in get("Select name FROM sqlite_master WHERE type =

'table';")]
91 else:
92 tables = [name]
93 for table in tables:
94 heads = []
95 for a in conn.execute("PRAGMA table_info(%s);" %table):

- 2 -

www.manaraa.com

96 heads.append(a[1])
97 log('\n\nTABLE: %s' % name)
98 log(heads)
99 for c in conn.execute("select * from %s;" %table):
100 log(c)
101 log('=========== end of table ============')
102
103 def database_info(): # prints some database info
104 log("Number of projects: %s project"%conn.execute("SELECT COUNT(*) FROM

projects;").fetchall()[0][0])
105 log("Number of activities: %s activity"%conn.execute("SELECT COUNT(*) FROM

activities;").fetchall()[0][0])
106 log("Number of relationships: %s relationship"%conn.execute("SELECT COUNT(*)

FROM relationships;").fetchall()[0][0])
107 log("Distinct relationships: %s"%[a[0] for a in conn.execute("SELECT DISTINCT

type FROM relationships;").fetchall()])
108 projects = [a[0] for a in conn.execute("SELECT projectid FROM projects;").

fetchall()]
109 for projectid in projects:
110 number_of_activities = conn.execute("SELECT COUNT(*) FROM activities WHERE

projectid = ?;",(projectid,)).fetchall()[0][0]
111 number_of_critical_activities = conn.execute("SELECT COUNT(*) FROM

activities WHERE projectid = ? AND tf = 0;",(projectid,)).fetchall()[0][0]
112 log(' - '+projectid + ' -> ' + str(number_of_activities) + ' activitiy -> ' +

str(number_of_critical_activities) + ' critical activity')
113
114 def project_create(projectid,projectname,start,interest,markup,downpayment,

invoiceinterval,paymentperiod,retention,retentionperiod): # Create a new Project
115 conn.execute("INSERT INTO projects \
116

(projectid,projectname,start,interest,markup,downpayment,invoiceinterval,paymentpe
riod,retention,retentionperiod) VALUES
('%s','%s','%s','%s','%s','%s','%s','%s','%s','%s')"%(projectid,projectname,start
,interest,markup,downpayment,invoiceinterval,paymentperiod,retention,
retentionperiod))

117
118 def activity_create(projectid,activityid,activityname,duration,cost): # Create a new

Activity in a Project
119 conn.execute("INSERT INTO activities

(projectid,activityid,activityname,duration,cost) VALUES
('%s','%s','%s','%s','%s');"% (projectid,activityid,activityname,duration,cost))

120
121 def relationship_create(projectid,activity1id,activity2id,relationship_type): #

Create a new Relationship between 2 Activities
122 conn.execute("INSERT INTO relationships (projectid,activity1id,activity2id,type)

VALUES (?,?,?,?);", (projectid,activity1id,activity2id,relationship_type))
123
124 def create_a_portfolio(): # Creates a sample portfolio for testing
125 log('Creating a random Portfolio')
126 number_of_projects = 3
127 min_number_of_activities = 20
128 max_number_of_activities = 25
129 for p in range(1,number_of_projects+1):
130 number_of_activities = random.randint(min_number_of_activities,

max_number_of_activities)
131 projectid = 'project' + str(p)
132 projectname = projectid
133 start = (datetime.date.today() + datetime.timedelta(days = random.randint(10,

300))).isoformat()
134 interest = random.randint(10,20)/ 100
135 markup = random.randint(15,25)/100
136 downpayment = random.randint(15,25)/100
137 invoiceinterval = 'monthly'
138 paymentperiod = 56
139 retention = 0.1
140 retentionperiod = 80
141 conn.execute("INSERT INTO projects

(projectid,projectname,start,interest,markup,downpayment,invoiceinterval,payme

- 3 -

www.manaraa.com

ntperiod,retention,retentionperiod) VALUES (?,?,?,?,?,?,?,?,?,?)", (projectid
, projectname,start,interest,markup,downpayment,invoiceinterval,paymentperiod
,retention,retentionperiod))

142 for a in range(1,number_of_activities+1):
143 projectid = projectid
144 activityid = 'activity' + str(a)
145 activityname = activityid
146 duration = random.randint(10,20)
147 cost = random.randint(1,10)
148 conn.execute("INSERT INTO activities

(projectid,activityid,activityname,duration,cost) VALUES (?,?,?,?,?);", (
projectid,activityid,activityname,duration,cost))

149 if a > 1:
150 for i in range([1,1,1,2][random.randint(0,3)]): # number of

relationships for each activity
151 for r in [random.randint(1,a-1)]:
152 projectid = projectid
153 activity1id = 'activity' + str(r)
154 activity2id = activityid
155 #~ relationship_type =

['fs','sf','ss','ff'][random.randint(0,3)]
156 relationship_type = ['fs','fs','fs','sf','ss','ff'][random.

randint(0,5)]
157 conn.execute("INSERT INTO relationships

(projectid,activity1id,activity2id,type) VALUES (?,?,?,?)", (
projectid,activity1id,activity2id,relationship_type))

158 conn.commit()
159 log(' - Done.')
160
161 def create_a_portfolio2(number_of_projects,min_number_of_activities,

max_number_of_activities): # Creates a sample portfolio for testing
162 log('Creating a random Portfolio')
163 for p in range(1,number_of_projects+1):
164 number_of_activities = random.randint(min_number_of_activities,

max_number_of_activities)
165 projectid = 'project' + str(p)
166 projectname = projectid
167 start = (datetime.date.today() + datetime.timedelta(days = random.randint(10,

300))).isoformat()
168 interest = random.randint(10,20)/ 100
169 markup = random.randint(15,25)/100
170 downpayment = random.randint(15,25)/100
171 invoiceinterval = 'monthly'
172 paymentperiod = 56
173 retention = 0.1
174 retentionperiod = 80
175 conn.execute("INSERT INTO projects

(projectid,projectname,start,interest,markup,downpayment,invoiceinterval,payme
ntperiod,retention,retentionperiod) VALUES (?,?,?,?,?,?,?,?,?,?)", (projectid
, projectname,start,interest,markup,downpayment,invoiceinterval,paymentperiod
,retention,retentionperiod))

176 for a in range(1,number_of_activities+1):
177 projectid = projectid
178 activityid = 'activity' + str(a)
179 activityname = activityid
180 duration = random.randint(10,20)
181 cost = random.randint(1,10)
182 conn.execute("INSERT INTO activities

(projectid,activityid,activityname,duration,cost) VALUES (?,?,?,?,?);", (
projectid,activityid,activityname,duration,cost))

183 if a > 1:
184 for i in range([1,1,1,2][random.randint(0,3)]): # number of

relationships for each activity random between 1 and 2
185 for r in [random.randint(1,a-1)]:
186 projectid = projectid
187 activity1id = 'activity' + str(r)
188 activity2id = activityid
189 #~ relationship_type =

- 4 -

www.manaraa.com

['fs','sf','ss','ff'][random.randint(0,3)]
190 relationship_type = ['fs','fs','fs','sf','ss','ff'][random.

randint(0,5)]
191 conn.execute("INSERT INTO relationships

(projectid,activity1id,activity2id,type) VALUES (?,?,?,?)", (
projectid,activity1id,activity2id,relationship_type))

192 conn.commit()
193 log(' - Done.')
194
195 def clean_database(): # clean redundant elements
196 print('Cleaning Database')
197 global conn
198 conn.execute('DELETE FROM activities WHERE projectid NOT IN (SELECT projectid

FROM projects);')
199 conn.execute('DELETE FROM relationships WHERE projectid NOT IN (SELECT projectid

FROM projects);')
200 conn.execute('DELETE FROM relationships WHERE activity1id NOT IN (SELECT

activityid FROM activities WHERE activities.projectid =
relationships.projectid);')

201 conn.execute('DELETE FROM relationships WHERE activity2id NOT IN (SELECT
activityid FROM activities WHERE activities.projectid =
relationships.projectid);')

202 conn.commit()
203 print(' - Done')
204
205 def import_uptown_projects():
206 # importing uptown cairo files
207 log('Importing UPTOWN projects...')
208 global conn
209 # Find files
210 path = './projectsfromprimavera/'
211 files = []
212 for a in os.listdir(path):
213 if 'xl' in a:
214 files.append(path+a)
215 # Cycle through the files
216 for file in files:
217 # Create New Project
218 projectid = file.replace(path,'')
219 projectid = projectid.replace('.','')
220 projectname = projectid
221 start = 0
222 interest = 0.1
223 markup = 0.2
224 downpayment = 0.1
225 invoiceinterval = 'monthly'
226 paymentperiod = 50
227 retention = 0.05
228 retentionperiod = 365
229 conn.execute("INSERT INTO projects

(projectid,projectname,start,interest,markup,downpayment,invoiceinterval,payme
ntperiod,retention,retentionperiod) VALUES (?,?,?,?,?,?,?,?,?,?);", (
projectid,projectname,start,interest,markup,downpayment,invoiceinterval,
paymentperiod,retention,retentionperiod))

230 # open the workbook
231 wb = xlrd.open_workbook(file)
232 sheet_names = wb.sheet_names()
233 needed_sheets = ['TASK', 'TASKPRED']
234 #open the task sheet
235 sheet = wb.sheet_by_name("TASK")
236 # get the indexes for needed rows
237 r = sheet.row_values(1)
238 activityidindex = r.index('Activity ID')
239 activitynameindex = r.index('Activity Name')
240 startindex = r.index('(*)Start')
241 endindex = r.index('(*)Finish')
242 durationindex = r.index('Original Duration(h)')
243 costindex = r.index('(*)Budgeted Total Cost($)')

- 5 -

www.manaraa.com

244 primaryconstraintindex = r.index('Primary Constraint')
245 primaryconstraintdateindex = r.index('Primary Constraint Date')
246 calendarindex = r.index('Calendar Name')
247
248 for i in range(2,sheet.nrows): # Loop on each row to get each activity
249 r = sheet.row_values(i)
250 activityid = r[activityidindex]
251 activityname = r[activitynameindex]
252 duration = r[durationindex]
253 calendar = r[calendarindex]
254 if calendar == '':
255 calendar = None
256 cost = float(r[costindex]) / (random.randint(15, 20) / 100)
257
258 # handle the primary constraint
259 if r[primaryconstraintindex] == '': # find out if there is a primary

constraint
260 primaryconstraint = None
261 primaryconstraintdate = None;
262 else:
263 primaryconstraint = r[primaryconstraintindex]
264 constdate = [int(a) for a in re.split("[: /]", r[

primaryconstraintdateindex])[0:3]] # this syntax is used to break
the dates

265 primaryconstraintdate = datetime.date(constdate[2],constdate[0],
constdate[1])

266
267 if r[startindex] == '':
268 start = [int(a) for a in re.split("[: /]", r[endindex])[0:3]] # this

syntax is used to break the dates
269 es = datetime.date(start[2],start[0],start[1])
270 ef = es
271 elif r[endindex] == '':
272 start = [int(a) for a in re.split("[: /]", r[startindex])[0:3]] #

this syntax is used to break the dates
273 es = datetime.date(start[2],start[0],start[1])
274 ef = es
275 else:
276 start = [int(a) for a in re.split("[: /]", r[startindex])[0:3]] #

this syntax is used to break the dates
277 end = [int(a) for a in re.split("[: /]", r[endindex])[0:3]] # this

syntax is used to break the dates
278 es = datetime.date(start[2],start[0],start[1])
279 ef = datetime.date(end[2],end[0],end[1])
280
281 conn.execute("INSERT INTO activities

(projectid,activityid,activityname,duration,cost,es,ef,primaryconstraint,
primaryconstraintdate,calendar) VALUES (?,?,?,?,?,?,?,?,?,?);",(projectid
,activityid,activityname,duration,cost,es,ef,primaryconstraint,
primaryconstraintdate,calendar))

282
283 # update the projects with the new start
284 conn.execute("UPDATE projects SET start = (SELECT DATE(MIN(JULIANDAY(es)))

FROM activities WHERE projects.projectid=activities.projectid and
activities.es IS NOT NULL);")

285 # open the ralationships sheet
286 sheet = wb.sheet_by_name('TASKPRED')
287 r = sheet.row_values(1)
288 activity1index = r.index('Predecessor')
289 activity2index = r.index('Successor')
290 relationshiptypeindex = r.index('Relationship Type')
291 rlagindex = r.index('Lag(h)')
292 for i in range(2,sheet.nrows):
293 r = sheet.row_values(i)
294 activity1id = r[activity1index]
295 activity2id = r[activity2index]
296 relationship_type = r[relationshiptypeindex]
297 rlag = r[rlagindex]

- 6 -

www.manaraa.com

298 conn.execute("INSERT INTO relationships
(projectid,activity1id,activity2id,type, rlag) VALUES (?,?,?,?,?);", (
projectid,activity1id,activity2id,relationship_type,rlag))

299 conn.commit()
300 log('Done.')
301
302 def pv(interest, days): # Function to calculate the present value inside SQLite
303 return math.pow(1+interest/365,days)
304
305 def parse_date(date_isoformat): # parse a date formated as an iso format string

'yyyy-mm-dd' into a date object
306 try:
307 year = int(date_isoformat.split("-")[0])
308 except:
309 log(' ! error in year in "%s"'%date_isoformat)
310 return 'null'
311 try:
312 month = int(date_isoformat.split("-")[1])
313 except:
314 log(' ! error in year in "%s"'%date_isoformat)
315 return 'null'
316 try:
317 day = int(date_isoformat.split("-")[2])
318 except:
319 log(' ! error in year in "%s"'%date_isoformat)
320 return 'null'
321 return datetime.date(year,month,day)
322
323 def calculate(scope): # calculate schedule and cashflow, the scope can be "normal"

or "opt"
324 log("SCHEDULING STARTED")
325 starttime = datetime.datetime.now()
326 if scope in ['normal']:
327 cond = ''
328 elif scope in ['opt']:
329 cond = 'opt'
330 else:
331 log(' [!] Error in parameter for calculate function')
332 if cond == '':
333 conn.execute("UPDATE activities SET es = NULL, ef = NULL, ls = NULL, lf =

NULL, ff = NULL, tf = NULL, os = NULL, of = NULL, lag = NULL;") # clear
previous results

334 conn.execute("Update projects set finish = NULL, duration = NULL;")
335 conn.execute('Update portfolio set start = NULL, finish = NULL, duration =

NULL;')
336 projects = [a[0] for a in conn.execute("SELECT projectid FROM projects").fetchall

()]
337
338 if cond == '': # FRONT AND BACK CALCULATION for the early start and finish
339 for projectid in projects: # loop for each project NOTE: Foor some reason,

it may better to do it this way
340 log(' > %s Project %s/%s with %s activity'%(datetime.datetime.now() -

starttime,projects.index(projectid) + 1, len(projects),conn.execute(
"SELECT COUNT(*) FROM activities WHERE projectid = ?;",(projectid,)).
fetchall()[0][0]))

341 conn.execute("UPDATE activities SET es = (SELECT start FROM projects
WHERE projectid = ?) WHERE projectid = ? AND activityid NOT IN (SELECT
activity2id FROM relationships WHERE relationships.projectid = ?);",(
projectid,projectid,projectid))

342 conn.execute("UPDATE activities SET ef = DATE(JULIANDAY(es) + duration)
WHERE projectid = ? AND es IS NOT NULL;",(projectid,))

343 while conn.execute("SELECT COUNT(*) FROM activities WHERE projectid = ?
AND es IS NULL;",(projectid,)).fetchall()[0][0] > 0: # loop while there
are unscheduled activities

344 log(' + %s New front - Remaining activities = %s activitiy'%(
datetime.datetime.now() - starttime,conn.execute("SELECT COUNT(*)
FROM activities WHERE projectid = ? AND es IS NULL;",(projectid,)).
fetchall()[0][0]))

- 7 -

www.manaraa.com

345 acts = [a[0] for a in conn.execute("SELECT DISTINCT(activity2id)
FROM big WHERE projectid = ? AND activity2es IS NULL AND activity1es
IS NOT NULL;",(projectid,)).fetchall()]

346 log(" -> Focusing on %s activity"%len(acts))
347 count = 0
348 for activityid in acts: # loop on each unscheduled activity
349 d = conn.execute('SELECT activity1es,activity1ef,

activity2duration,type, rlag FROM big WHERE projectid = ? AND
activity2id = ?;',(projectid,activityid)).fetchall()

350 if None not in[a[0] for a in d]: # check if all needed data in
there

351 es1l = [a[0] for a in d]
352 ef1l = [a[1] for a in d]
353 dur2l = [a[2] for a in d]
354 rtypel = [a[3] for a in d]
355 rlags = [a[4] for a in d]
356 project_start = parse_date(conn.execute("SELECT start FROM

projects WHERE projects.projectid = ?",(projectid,)).fetchall
()[0][0])

357 if None not in es1l + ef1l + dur2l + rtypel and d != []: #
If this is true, then the activity can be scheduled because
all its predessessors are set

358 es1l = [parse_date(a) for a in es1l]
359 ef1l = [parse_date(a) for a in ef1l]
360 possible_es2 = [project_start]
361 for es1,ef1,dur2,rtype,rlag in zip(es1l,ef1l,dur2l,rtypel

,rlags):
362 if rlag == None:
363 rlag = 0
364 if rtype in ['fs','FS','fS','Fs']:
365 possible_es2.append(ef1 + datetime.timedelta(rlag))
366 if rtype in ['ss','SS','sS','Ss']:
367 possible_es2.append(es1 + datetime.timedelta(rlag))
368 if rtype in ['ff','FF','fS','Fs']:
369 possible_es2.append(ef1 - datetime.timedelta(dur2

) + datetime.timedelta(rlag))
370 if rtype in ['sf','SF','sF','Fs']:
371 possible_es2.append(es1 - datetime.timedelta(dur2

) + datetime.timedelta(rlag))
372 es2 = max(possible_es2) # get the max of the

possible es2
373
374 # compare if there is a constraint of the activity
375 primaryconstraint, primaryconstraintdate,duration,

calendar = conn.execute("SELECT primaryconstraint,
primaryconstraintdate,duration,calendar FROM activities
WHERE projectid = ? AND activityid = ?",(projectid,
activityid)).fetchall()[0]

376 if primaryconstraint != None:
377 primaryconstraintdate = parse_date(

primaryconstraintdate)
378 if primaryconstraint == "Finish On or Before" and es2

+ datetime.timedelta(duration) >
primaryconstraintdate:

379 es2 = primaryconstraintdate - datetime.timedelta(
duration)

380 elif primaryconstraint == "Start On or After" and es2
< primaryconstraintdate:

381 es2 = primaryconstraintdate
382 ef2 = adddays(es2,duration,calendar)
383
384 #add the new calculated early start
385 conn.execute("UPDATE activities SET es = ? WHERE

projectid = ? AND activityid = ?;",(es2.isoformat(),
projectid,activityid))

386 conn.execute("UPDATE activities SET ef = ? WHERE
projectid = ? AND activityid = ?;",(ef2.isoformat(),
projectid,activityid))

- 8 -

www.manaraa.com

387 count += 1
388 log(" -> set %s activity "%count)
389 # write the new project finish dates
390 log(" + %s Writing project finish dates"%(datetime.datetime.now() -

starttime,))
391 conn.execute("UPDATE projects SET finish = (SELECT

DATE(MAX(JULIANDAY(ef))) FROM activities WHERE activities.projectid = ?)
WHERE projectid = ?;",(projectid,projectid))

392 conn.execute("UPDATE projects SET duration = JULIANDAY(finish) -
JULIANDAY(start) WHERE projectid = ?;",(projectid,))

393 # write the new values in the portfolio
394 conn.execute("UPDATE portfolio SET start = (SELECT

DATE(MIN(JULIANDAY(start))) FROM projects);")
395 conn.execute("UPDATE portfolio SET finish = (SELECT

DATE(MAX(JULIANDAY(start))) FROM projects);")
396 conn.execute("UPDATE portfolio SET duration = JULIANDAY(finish) -

JULIANDAY(start);")
397 conn.execute("UPDATE portfolio SET numberofprojects = (SELECT COUNT(*)

from projects);")
398 conn.execute("UPDATE portfolio SET numberofactivities = (SELECT COUNT(*)

from activities);")
399 # Back calculations
400 conn.execute("UPDATE activities SET lf = (SELECT finish FROM projects

WHERE projectid = ?) WHERE projectid = ? AND activityid NOT IN (SELECT
activity1id FROM relationships WHERE relationships.projectid = ?);",(
projectid,projectid,projectid))

401 conn.execute("UPDATE activities SET ls = DATE(JULIANDAY(lf) - duration)
WHERE projectid = ? AND lf IS NOT NULL;",(projectid,))

402 while conn.execute("SELECT COUNT(*) FROM activities WHERE projectid = ?
AND ls IS NULL;",(projectid,)).fetchall()[0][0] > 0: # loop while there
are unscheduled activities

403 log(' + %s New back '%(datetime.datetime.now() - starttime,))
404 acts = [a[0] for a in conn.execute("SELECT DISTINCT(activity1id)

FROM big WHERE projectid = ? AND activity1ls IS NULL AND activity2ls
IS NOT NULL;",(projectid,)).fetchall()]

405 log(" -> Focusing on %s activity"%len(acts))
406 count = 0
407 for activityid in acts: # loop on each unscheduled activity
408 d = conn.execute('SELECT activity2ls,activity2lf,

activity1duration,type, rlag FROM big WHERE projectid = ? AND
activity1id = ?;',(projectid,activityid)).fetchall()

409 if None not in [a[0] for a in d]:
410 ls2l = [a[0] for a in d]
411 lf2l = [a[1] for a in d]
412 dur1l = [a[2] for a in d]
413 rtypel = [a[3] for a in d]
414 rlags = [a[4] for a in d]
415 project_finish = parse_date(conn.execute("SELECT finish FROM

projects WHERE projects.projectid = ?",(projectid,)).fetchall
()[0][0])

416 if None not in ls2l + lf2l and d != []: # If this is true,
then the activity can be scheduled because all its
predessessors are set

417 ls2l = [parse_date(a) for a in ls2l]
418 lf2l = [parse_date(a) for a in lf2l]
419 possible_lf1 = [project_finish]
420 for ls2,lf2,dur1,rtype,rlag in zip(ls2l,lf2l,dur1l,rtypel

,rlags):
421 if rlag == None:
422 rlag = 0
423 if rtype in ['fs','FS','fS','Fs']:
424 possible_lf1.append(ls2 + datetime.timedelta(rlag))
425 if rtype in ['ss','SS','sS','Ss']:
426 possible_lf1.append(ls2 + datetime.timedelta(dur1

) + datetime.timedelta(rlag))
427 if rtype in ['ff','FF','fS','Fs']:
428 possible_lf1.append(lf2 + datetime.timedelta(rlag))
429 if rtype in ['sf','SF','sF','Fs']:

- 9 -

www.manaraa.com

430 possible_lf1.append(lf2 + datetime.timedelta(dur1
) + datetime.timedelta(rlag))

431 lf1 = min(possible_lf1)
432
433 # compare if there is a constraint of the activity
434 primaryconstraint, primaryconstraintdate,duration,

calendar = conn.execute("SELECT primaryconstraint,
primaryconstraintdate,duration,calendar FROM activities
WHERE projectid = ? AND activityid = ?",(projectid,
activityid)).fetchall()[0]

435 if primaryconstraint != None:
436 primaryconstraintdate = parse_date(

primaryconstraintdate)
437 if primaryconstraint == "Finish On or Before" and lf1

> primaryconstraintdate:
438 lf1 = primaryconstraintdate
439 elif primaryconstraint == "Start On or After" and lf1

- datetime.timedelta(duration) <
primaryconstraintdate:

440 lf1 = primaryconstraintdate + datetime.timedelta(
duration)

441 ls = adddays(lf1,-duration,calendar)
442
443 conn.execute("UPDATE activities SET lf = ? WHERE

projectid = ? AND activityid = ?;",(lf1.isoformat(),
projectid,activityid))

444 conn.execute("UPDATE activities SET ls = ? WHERE
projectid = ? AND activityid = ?;",(ls.isoformat(),
projectid,activityid))

445 count += 1
446 log(" -> set %s activity "%count)
447 conn.execute("UPDATE activities SET tf = JULIANDAY(lf) - JULIANDAY(ef)

WHERE projectid = ?;",(projectid,)) # calculate the total float
448 # update projects
449 conn.execute("UPDATE projects SET totalactivities = (SELECT COUNT(*) FROM

activities WHERE projects.projectid = activities.projectid);")
450 conn.execute("UPDATE projects SET criticalactivities = (SELECT COUNT(*) FROM

activities WHERE projects.projectid = activities.projectid AND activities.tf
= 0);")

451 conn.commit()
452 conn.execute('VACUUM;')
453 conn.commit()
454 log(' + %s Done.'%(datetime.datetime.now() - starttime,))
455
456 elif cond == 'opt':# FRONt CALCULATION ONLY FOR THE OPTIMUM. This will not

randomize the lags, it will only calculate upon them
457 for projectid in projects: # loop for each project
458 log(' > %s Project %s/%s with %s activity'%(datetime.datetime.now() -

starttime,projects.index(projectid) + 1, len(projects),conn.execute(
"SELECT COUNT(*) FROM activities WHERE projectid = ?;",(projectid,)).
fetchall()[0][0]))

459 conn.execute("UPDATE activities SET os = DATE((SELECT JULIANDAY(start)
FROM projects WHERE projectid = ?) + lag) WHERE projectid = ? AND
activityid NOT IN (SELECT activity2id FROM relationships WHERE
relationships.projectid = ?);",(projectid,projectid,projectid))

460 conn.execute("UPDATE activities SET of = DATE(JULIANDAY(os) + duration)
WHERE projectid = ? AND os IS NOT NULL;",(projectid,))

461 while conn.execute("SELECT COUNT(*) FROM activities WHERE projectid = ?
AND os IS NULL;",(projectid,)).fetchall()[0][0] > 0: # loop while there
are unscheduled activities

462 log(' + %s New front - Remaining activities = %s activitiy'%(
datetime.datetime.now() - starttime,conn.execute("SELECT COUNT(*)
FROM activities WHERE projectid = ? AND os IS NULL;", (projectid,)).
fetchall()[0][0]))

463 acts = [a[0] for a in conn.execute("SELECT DISTINCT(activity2id)
FROM big WHERE projectid = ? AND activity2os IS NULL AND activity1os
IS NOT NULL;",(projectid,)).fetchall()]

464 log(" -> Focusing on %s activity"%len(acts))

- 10 -

www.manaraa.com

465 count = 0
466 for activityid in acts: # loop on each unscheduled activity
467 d = conn.execute('SELECT activity1os,activity1of,

activity2duration,type, rlag FROM big WHERE projectid = ? AND
activity2id = ?;',(projectid,activityid)).fetchall()

468 os1l = [a[0] for a in d]
469 of1l = [a[1] for a in d]
470 dur2l = [a[2] for a in d]
471 rtypel = [a[3] for a in d]
472 rlags = [a[4] for a in d]
473 lag, es2 = conn.execute('SELECT lag, es FROM activities WHERE

projectid = ? AND activityid = ?;',(projectid,activityid)).
fetchall()[0]

474 lag = int(lag)
475 es2 = parse_date(es2)
476 project_start = parse_date(conn.execute("SELECT start FROM

projects WHERE projects.projectid = ?",(projectid,)).fetchall()[0
][0])

477 if None not in os1l + of1l + dur2l + rtypel and d != []: # If
this is true, then the activity can be scheduled because all its
predessessors are set

478 os1l = [parse_date(a) for a in os1l]
479 of1l = [parse_date(a) for a in of1l]
480 possible_os2 = [project_start,es2 + datetime.timedelta(lag)]
481 for os1,of1,dur2,rtype,rlag in zip(os1l,of1l,dur2l,rtypel,

rlags):
482 if rlag == None:
483 rlag = 0
484 if rtype in ['fs','FS','fS','Fs']:
485 possible_os2.append(of1 + datetime.timedelta(rlag))
486 if rtype in ['ss','SS','sS','Ss']:
487 possible_os2.append(os1 + datetime.timedelta(rlag))
488 if rtype in ['ff','FF','fS','Fs']:
489 possible_os2.append(of1 - datetime.timedelta(dur2) +

datetime.timedelta(rlag))
490 if rtype in ['sf','SF','sF','Fs']:
491 possible_os2.append(os1 - datetime.timedelta(dur2) +

datetime.timedelta(rlag))
492 os2 = max(possible_os2)
493
494 # compare if there is a constraint of the activity
495 primaryconstraint, primaryconstraintdate,duration,calendar =

conn.execute("SELECT primaryconstraint,
primaryconstraintdate,duration,calendar FROM activities
WHERE projectid = ? AND activityid = ?",(projectid,
activityid)).fetchall()[0]

496 if primaryconstraint != None:
497 primaryconstraintdate = parse_date(primaryconstraintdate)
498 if primaryconstraint == "Finish On or Before" and os2 +

datetime.timedelta(duration) > primaryconstraintdate:
499 os2 = primaryconstraintdate - datetime.timedelta(

duration)
500 elif primaryconstraint == "Start On or After" and os2 <

primaryconstraintdate:
501 os2 = primaryconstraintdate
502 of = adddays(os2,duration,calendar)
503
504 conn.execute("UPDATE activities SET os = ? WHERE projectid =

? AND activityid = ?;",(os2.isoformat(),projectid,activityid))
505 conn.execute("UPDATE activities SET lag = JULIANDAY(os) -

JULIANDAY(es) WHERE projectid = ? AND activityid = ?;",(
projectid,activityid))

506 conn.execute("UPDATE activities SET of = ? WHERE projectid =
? AND activityid = ?;",(of.isoformat(),projectid,activityid))

507 count += 1
508 log(" -> set %s activity "%count)
509 # ---
510 log('Calculating Cash flow ')

- 11 -

www.manaraa.com

511 if cond == '':
512 # Calculate cost and price of projects
513 conn.execute("UPDATE projects SET cost = (SELECT SUM(cost) FROM activities

WHERE projects.projectid = activities.projectid);")
514 conn.execute("UPDATE projects SET price = cost * (1+markup);")
515 # Initiate the cash flow table
516 conn.execute("DELETE FROM cashflow%s;"%cond)
517 conn.execute("DELETE FROM cashflowall%s;"%cond)
518 # create the dates ------------------------------------
519 first_date = conn.execute("SELECT DATE(MIN(JULIANDAY(es))) FROM activities;").

fetchall()[0][0]
520 finish_date = conn.execute("SELECT DATE(MAX(JULIANDAY(ls))) FROM activities;").

fetchall()[0][0]
521 max_payment_period = int(conn.execute("SELECT MAX(paymentperiod) FROM projects;"

).fetchall()[0][0])
522 max_retention_period = int(conn.execute("SELECT MAX(retentionperiod) FROM

projects;").fetchall()[0][0])
523 first_date = datetime.date(int(first_date.split("-")[0]),int(first_date.split("-"

)[1]),int(first_date.split("-")[2]))
524 finish_date = datetime.date(int(finish_date.split("-")[0]),int(finish_date.split(

"-")[1]),int(finish_date.split("-")[2]))
525 last_date = finish_date + datetime.timedelta(max(max_payment_period,

max_retention_period)+10)
526 curr_date = first_date
527 projects = [a[0] for a in conn.execute("SELECT projectid FROM projects;")]
528 while curr_date <= last_date:
529 for project in projects:
530 conn.execute("INSERT INTO cashflow%s (date,projectid) VALUES (?,?);"%cond

,(curr_date.isoformat(),project))
531 curr_date += datetime.timedelta(1)
532 log(" + %s Filled cash flow with dates"%(datetime.datetime.now() - starttime,))
533 for projectid in projects: # loop for each project NOTE: For some reason, it may

better to do it this way
534 log(" - Calculating cash project %s/%s"%(projects.index(projectid)+1,len(

projects)))
535 # Fill cash out
536 if cond == '':
537 conn.execute("UPDATE cashflow%s SET cashout = (SELECT SUM(cost/duration)

FROM activities WHERE projectid = ? AND cashflow%s.date >= activities.%s
and cashflow%s.date < activities.%s) WHERE projectid = ?;"%(cond,cond,
'es',cond,'ef'),(projectid,projectid))

538 elif cond == 'opt':
539 conn.execute("UPDATE cashflow%s SET cashout = (SELECT SUM(cost/duration)

FROM activities WHERE projectid = ? AND cashflow%s.date >= activities.%s
and cashflow%s.date < activities.%s) WHERE projectid = ?;"%(cond,cond,
'os',cond,'of'),(projectid,projectid))

540 conn.execute("UPDATE cashflow%s SET cashout = 0 WHERE cashout IS NULL AND
projectid = ?;"%cond,(projectid,))

541 log(" + %s Calculated cash out"%(datetime.datetime.now() - starttime,))
542 conn.execute("UPDATE cashflow%s SET cashin = 0 WHERE projectid = ?;"%cond,(

projectid,))
543 # Fill the invoices issued without considering the downpayment and retention
544 #~ conn.execute("UPDATE cashflow%s SET cashin = cashin + (SELECT

SUM(cashout) * (1+(SELECT markup from projects WHERE projectid = ?)) FROM
cashflow%s as c2 WHERE projectid = ? AND DATE(cashflow%s.date,'start of
month') = DATE(c2.date,'start of month')) WHERE date = DATE(date,'start of
month','+1 month','-1 day') AND projectid =
?;"%(cond,cond,cond),(projectid,projectid,projectid))

545
546 conn.execute("UPDATE cashflow%s SET cashin = cashin + (SELECT SUM(cashout)

FROM cashflow%s as c2 WHERE projectid = ? AND
DATE(JULIANDAY(cashflow%s.date) - (SELECT paymentperiod FROM projects WHERE
projectid = ?),'start of month','+1 month','-1 day') = DATE(c2.date,'start
of month','+1 month','-1 day')) WHERE DATE(JULIANDAY(date) - (SELECT
paymentperiod FROM projects WHERE projectid = ?)) = DATE(JULIANDAY(date) -
(SELECT paymentperiod FROM projects WHERE projectid = ?),'start of
month','+1 month','-1 day') AND projectid = ?;"%(cond,cond,cond),(projectid,
projectid,projectid,projectid,projectid))

- 12 -

www.manaraa.com

547
548 # increse profit deduction for downpayment and retention
549 conn.execute("UPDATE cashflow%s SET cashin = cashin * (1+(SELECT markup from

projects WHERE projectid = ?)) WHERE projectid = ? AND cashin != 0;"%cond,(
projectid,projectid))

550 conn.execute("UPDATE cashflow%s SET cashin = cashin - ((cashin / (SELECT
price FROM projects WHERE projectid = ?)) * ((SELECT downpayment*price FROM
projects WHERE projectid = ?) + (SELECT retention*price FROM projects WHERE
projectid = ?))) WHERE cashin != 0 AND projectid = ?;"%(cond,),(projectid,
projectid,projectid,projectid))

551 # Fill the downpayments
552 conn.execute("UPDATE cashflow%s SET cashin = cashin + (SELECT

downpayment*price FROM projects WHERE projectid = ?) WHERE date = (SELECT
start FROM projects WHERE projectid = ?) AND projectid = ?;"%(cond,),(
projectid,projectid,projectid))

553 # Fill the retention received
554 conn.execute("UPDATE cashflow%s SET cashin = cashin + (SELECT

retention*price FROM projects WHERE projectid = ?) WHERE date=(SELECT
DATE(JULIANDAY(finish)+retentionperiod) FROM projects WHERE projectid = ?)
AND projectid = ?;"%(cond,),(projectid,projectid,projectid))

555 log(" + %s Calculated cash in"%(datetime.datetime.now() - starttime,))
556 # Fill cash out cumulative
557 conn.execute("UPDATE cashflow%s SET cashoutcum = (SELECT SUM(cashout) FROM

cashflow%s as temp WHERE projectid = ? AND JULIANDAY(cashflow%s.date) >=
JULIANDAY(temp.date)) WHERE projectid = ?;"%(cond,cond,cond), (projectid,
projectid))

558 # Fill cash in cumulative
559 conn.execute("UPDATE cashflow%s SET cashincum = (SELECT SUM(cashin) FROM

cashflow%s as temp WHERE projectid = ? AND JULIANDAY(cashflow%s.date) >=
JULIANDAY(temp.date)) WHERE projectid = ?;"%(cond,cond,cond), (projectid,
projectid))

560 log(" + %s Calculated cummulative"%(datetime.datetime.now() - starttime,))
561 # Fill the overdraft
562 conn.execute("UPDATE cashflow%s SET overdraft = cashincum - cashoutcum WHERE

projectid = ?;"%cond,(projectid,))
563 #Fill the discounted values
564 conn.create_function("pv",2,pv) # Creates a new function in SQLITE to

calculate the present value
565 conn.execute("UPDATE cashflow%s SET cashoutdisc = cashout / pv((SELECT

interest from projects WHERE projectid = ?),JULIANDAY(date) - (SELECT
MIN(JULIANDAY(start)) FROM projects)) WHERE projectid = ?;"%(cond,), (
projectid, projectid))

566 conn.execute("UPDATE cashflow%s SET cashindisc = cashin / pv((SELECT
interest from projects WHERE projectid = ?),JULIANDAY(date) - (SELECT
MIN(JULIANDAY(start)) FROM projects)) WHERE projectid = ?;"%(cond,), (
projectid,projectid))

567 conn.execute("UPDATE cashflow%s SET cashoutcumdisc = cashoutcum / pv((SELECT
interest from projects WHERE projectid = ?),JULIANDAY(date) - (SELECT
MIN(JULIANDAY(start)) FROM projects)) WHERE projectid = ?;"%(cond,), (
projectid, projectid))

568 conn.execute("UPDATE cashflow%s SET cashincumdisc = cashincum / pv((SELECT
interest from projects WHERE projectid = ?),JULIANDAY(date) - (SELECT
MIN(JULIANDAY(start)) FROM projects)) WHERE projectid = ?;"%(cond,), (
projectid, projectid))

569 conn.execute("UPDATE cashflow%s SET overdraftdisc = overdraft / pv((SELECT
interest from projects WHERE projectid = ?),JULIANDAY(date) - (SELECT
MIN(JULIANDAY(start)) FROM projects)) WHERE projectid = ?;"%(cond,), (
projectid, projectid))

570 log(" + %s Calculated discounted"%(datetime.datetime.now() - starttime,))
571 # fill into the cashflow all table
572 conn.execute("DELETE FROM cashflowall%s;"%cond)
573 # create the dates
574 first_date = conn.execute("SELECT DATE(MIN(JULIANDAY(start))) FROM projects;").

fetchall()[0][0]
575 last_date = conn.execute("SELECT

DATE(MAX(MAX(JULIANDAY(finish)+paymentperiod),MAX(JULIANDAY(finish)+retentionperio
d)) + 50) FROM projects;").fetchall()[0][0]

576 first_date = datetime.date(int(first_date.split("-")[0]),int(first_date.split("-"

- 13 -

www.manaraa.com

)[1]),int(first_date.split("-")[2]))
577 last_date = datetime.date(int(last_date.split("-")[0]),int(last_date.split("-")[1

]),int(last_date.split("-")[2]))
578 curr_date = first_date
579 while curr_date <= last_date:
580 conn.execute("INSERT INTO cashflowall%s (date) VALUES ('%s')"%(cond,curr_date

.isoformat()))
581 curr_date += datetime.timedelta(1)
582 # fill in the values in the
583 conn.execute("UPDATE cashflowall%s SET projectid = 'all';"%cond)
584 for col in ['cashin','cashout','cashincum','cashoutcum','cashindisc',

'cashoutdisc','cashincumdisc','cashoutcumdisc','overdraft','overdraftdisc']:
585 conn.execute("UPDATE cashflowall%s SET %s = (SELECT SUM(%s) FROM cashflow%s

WHERE cashflow%s.date = cashflowall%s.date);"%(cond,col,col,cond,cond,cond))
586 # Fill the present values and the npv into the projects table
587 conn.execute("UPDATE projects SET cashinpv%s = (SELECT SUM(cashindisc) FROM

cashflow%s WHERE cashflow%s.projectid = projects.projectid);"%(cond,cond,cond))
588 conn.execute("UPDATE projects SET cashoutpv%s = (SELECT SUM(cashoutdisc) FROM

cashflow%s WHERE cashflow%s.projectid = projects.projectid);"%(cond,cond,cond))
589 conn.execute("UPDATE projects SET npv%s = cashinpv%s - cashoutpv%s;"%(cond,cond,

cond))
590 conn.execute("UPDATE projects SET maxoverdraftdisc%s = (SELECT

MAX(overdraftdisc) FROM cashflow%s WHERE cashflow%s.projectid =
projects.projectid);"%(cond,cond,cond))

591 conn.execute("UPDATE projects SET minoverdraftdisc%s = (SELECT
MIN(overdraftdisc) FROM cashflow%s WHERE cashflow%s.projectid =
projects.projectid);"%(cond,cond,cond))

592 # FILL the cashflow values in the portfolio table
593 if cond == '':
594 conn.execute("UPDATE portfolio SET cost = (SELECT SUM(cost) FROM projects);")
595 conn.execute("UPDATE portfolio SET price = (SELECT SUM(price) FROM projects);")
596 conn.execute("UPDATE portfolio SET cashinpv%s = (SELECT SUM(cashindisc) FROM

cashflowall%s);"%(cond,cond))
597 conn.execute("UPDATE portfolio SET cashoutpv%s = (SELECT SUM(cashoutdisc) FROM

cashflowall%s);"%(cond,cond))
598 conn.execute("UPDATE portfolio SET npv%s = cashinpv%s - cashoutpv%s;"%(cond,cond,

cond))
599 conn.execute("UPDATE portfolio SET maxoverdraftdisc%s = (SELECT

MAX(overdraftdisc) FROM cashflowall%s);"%(cond,cond))
600 conn.execute("UPDATE portfolio SET minoverdraftdisc%s = (SELECT

MIN(overdraftdisc) FROM cashflowall%s);"%(cond,cond))
601 conn.commit()
602 conn.execute("VACUUM;")
603 conn.commit()
604 log(" + %s Done."%(datetime.datetime.now() - starttime,))
605
606 def export(): # export a lot of files for further analysis
607 log("Exporting")
608 if not os.path.exists(export_folder):
609 os.mkdir(export_folder)
610 # Remove old files
611
612 files = os.listdir(export_folder)
613 for file in files:
614 try:
615 os.remove(export_folder+file)
616 except:
617 log(' [!] Error removing file "%s" from export folder!'%file)
618 log(' - Removed old files from export folder')
619
620 # export database summary
621 txtfile = export_folder + 'summary.txt'
622 with open(txtfile,'w') as f:
623 tablenames = [a[0] for a in conn.execute("Select name FROM sqlite_master

WHERE type='table' or type='view';").fetchall()]
624 for name in tablenames:
625 f.write(' -> '+name+'\n')
626 columnnames = [a[1] for a in conn.execute("PRAGMA table_info(%s);" %name)]

- 14 -

www.manaraa.com

627 columntypes = [a[2] for a in conn.execute("PRAGMA table_info(%s);" %name)]
628 for col,t in zip(columnnames,columntypes):
629 f.write(' -> '+col + ' -> '+ t +'\n')
630
631 # Export excel file
632 excel_file = export_folder + 'output.xlsx'
633 log(' - Exporting to Excel File "%s"' %excel_file)
634 wb = xlsxwriter.Workbook(excel_file)
635 bold = wb.add_format({'bold': True})
636 for table in [a[0] for a in conn.execute("SELECT name FROM sqlite_master WHERE

type='table';").fetchall()]:
637 ws = wb.add_worksheet(table)
638 ws.repeat_rows(0)
639 ws.freeze_panes(1, 1)
640 ws.set_portrait()
641 ws.set_paper(4)
642 ws.center_horizontally()
643 ws.center_vertically()
644 ws.set_footer('&CPage &P of &N')
645 ws.fit_to_pages(1, 0)
646 row = 0
647 col = 0
648 heads = [a[0] for a in conn.execute("PRAGMA table_info(%s);" %table)]
649 for head in heads:
650 ws.write(row,col,head,bold)
651 col += 1
652 ws.set_column(0,col,15)
653 row = 1
654 sql = 'SELECT * FROM %s;'%table
655 for each in conn.execute(sql).fetchall():
656 col = 0
657 for cell in each:
658 ws.write(row,col,cell)
659 col += 1
660 row += 1
661 conn.close
662 wb.close()
663
664 # export csv file for every table
665 log(" - Exporting csvs")
666 tables = [a[0] for a in conn.execute("SELECT name FROM sqlite_master WHERE

type='table';").fetchall()]
667 for table in tables:
668 with open(export_folder+'%s.csv'%table,'w',newline='') as csvfile:
669 w = spamwriter = csv.writer(csvfile)
670 data = conn.execute("PRAGMA table_info(%s);" %table).fetchall()
671 data = [a[1] for a in data]
672 w.writerow(data)
673 data = conn.execute("SELECT * FROM %s;"%table)
674 for r in data:
675 w.writerow(r)
676
677 # export portfolio charts
678 log(" - Exporting portfolio charts")
679 export_file_name = export_folder + 'portfoliosummary' + figure_export_format
680 data = conn.execute("SELECT projectid,totalactivities,criticalactivities FROM

projects;").fetchall()
681 projectids = [a[0] for a in data]
682 totalactivities = [int(a[1]) for a in data]
683 criticalactivities = [int(a[2]) for a in data]
684 noncriticalactivities = [a[1] - a[0] for a in zip(criticalactivities,

totalactivities)]
685 lw = 10
686 plt.vlines(range(len(projectids)),[0 for a in projectids], criticalactivities,

color = 'red', label = 'Critical Activities', lw = lw)
687 plt.vlines(range(len(projectids)),criticalactivities,totalactivities, color =

'blue', label = 'Non--critical Activities', lw = lw)
688 plt.xlabel('Projects')

- 15 -

www.manaraa.com

689 plt.ylabel('Number of Activities')
690 plt.title(title + 'Summary of Activities')
691 plt.xticks(range(len(projectids)),projectids)
692 plt.legend(loc='best',fancybox=True,framealpha=0.5, fontsize = 8)
693 plt.margins(0.05)
694 plt.savefig(export_file_name,transparent=True)
695 plt.close('all')
696
697 # export gantt charts for portfolio and projects
698 log(' - Exporting Gantt Charts')
699 projects = conn.execute("SELECT projectid, start, finish FROM projects;").

fetchall()
700 projects.reverse()
701 projectids = [a[0] for a in projects]
702 projectstarts = [parse_date(a[1]) for a in projects]
703 projectfinishes = [parse_date(a[2]) for a in projects]
704 fig, ax = plt.subplots(1)
705 lw = 8
706 color = 'blue'
707 ax.hlines(range(len(projectids)),projectstarts,projectfinishes,lw=lw, color =

color)
708 fig.autofmt_xdate()
709 plt.xlabel('Time')
710 plt.ylabel('Projects')
711 plt.yticks(range(len(projectids)),projectids)
712 xticks = [min(projectstarts) ,max(projectfinishes)]
713 plt.xticks(xticks,xticks)
714 plt.title(title + 'Portfolio Gantt Chart')
715 plt.margins(0.05)
716 plt.savefig(export_folder+'portfolioganttchart'+figure_export_format,transparent=

True)
717 plt.close('all')
718 for p in projectids:
719 export_file_name = 'ganttchart' + p + figure_export_format
720 data = conn.execute("SELECT activityid,es,ef,lf FROM activities WHERE

projectid = '%s';"%p).fetchall()
721 data.reverse()
722 activityid = [a[0] for a in data]
723 activityn = range(len(activityid))
724 adict = {}
725 for aid, an in zip(activityid, activityn):
726 adict[aid] = an
727 es = [parse_date(a[1]) for a in data]
728 ef = [parse_date(a[2]) for a in data]
729 lf = [parse_date(a[3]) for a in data]
730 fig, ax = plt.subplots(1)
731 lw = 2
732 ax.hlines(activityn,es,ef,lw=lw, color = color, label= 'Non-critical

Activities')
733 if None not in lf:
734 ax.hlines(activityn,ef, lf,lw=lw/1.5, color = 'green', label = 'Total

Float')
735 critaid = []
736 ces = []
737 cef= []
738 clf = []
739 for a in zip(range(len(activityid)),es,ef,lf):
740 if a[2] == a[3]:
741 critaid.append(a[0])
742 ces.append(a[1])
743 cef.append(a[2])
744 clf.append(a[3])
745 ax.hlines(critaid,ces,cef,lw=lw, color = 'red', label= 'Critical

Activities')
746 plt.yticks(activityn,['' for a in activityid], size = 2)
747 fig.autofmt_xdate()
748 # add arrows for the relationships
749 data = conn.execute("SELECT activity1id, activity1es, activity1ef,

- 16 -

www.manaraa.com

activity2id, activity2es, activity2ef, type FROM big WHERE projectid = '%s';"
%p).fetchall()

750 for activity1id, activity1es, activity1ef, activity2id, activity2es,
activity2ef, rtype in zip([a[0] for a in data], [parse_date(a[1]) for a in
data], [parse_date(a[2]) for a in data], [a[3] for a in data], [parse_date(a[
4]) for a in data], [parse_date(a[5]) for a in data], [a[6] for a in data]):

751 activity1n = adict[activity1id]
752 activity2n = adict[activity2id]
753 if rtype in ['fs','FS','fS','Fs']:
754 plt.annotate("", xy=(activity1ef, activity1n), xycoords='data',

xytext=(activity2es, activity2n), textcoords='data', arrowprops=dict(
arrowstyle="<-", lw = 0.2))

755 if rtype in ['ss','SS','sS','Ss']:
756 plt.annotate("", xy=(activity1es, activity1n), xycoords='data',

xytext=(activity2es, activity2n), textcoords='data', arrowprops=dict(
arrowstyle="<-", lw = 0.2))

757 if rtype in ['ff','FF','fS','Fs']:
758 plt.annotate("", xy=(activity1ef, activity1n), xycoords='data',

xytext=(activity2ef, activity2n), textcoords='data', arrowprops=dict(
arrowstyle="<-", lw = 0.2))

759 if rtype in ['sf','SF','sF','Fs']:
760 plt.annotate("", xy=(activity1es, activity1n), xycoords='data',

xytext=(activity2ef, activity2n), textcoords='data', arrowprops=dict(
arrowstyle="<-", lw = 0.2))

761 plt.xlabel('Time')
762 xticks = [min(es) ,max(ef)]
763 plt.xticks(xticks,xticks)
764 plt.ylabel('Activities')
765 plt.title(title + 'Gantt Chart - ' + p)
766 plt.legend(loc='best',fancybox=True,framealpha=0.5, fontsize = 8)
767 plt.margins(0.05)
768 plt.savefig(export_folder+export_file_name,transparent=True)
769 plt.close('all')
770
771 # Export cashflow charts
772 log(" - Exporting cashflow")
773 data = conn.execute("SELECT

date,cashincum,cashoutcum,overdraft,cashincumdisc,cashoutcumdisc,overdraftdisc
from cashflowall;").fetchall()

774 dates = [a[0] for a in data]
775 dates = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.split('-'

)[2])) for a in dates]
776 cashincum = [a[1] for a in data]
777 cashoutcum = [a[2] for a in data]
778 overdraft = [a[3] for a in data]
779 cashincumdisc = [a[4] for a in data]
780 cashoutcumdisc = [a[5] for a in data]
781 overdraftdisc = [a[6] for a in data]
782 plt.close('all')
783 fig, ax = plt.subplots(1)
784 lw = 0.5
785 for a, l in ((cashincum,'Cash In Cummulative'),(cashoutcum,'Cash Out Cummulative'

),(overdraft,'Overdraft'),(cashincumdisc,'Cash Out Cummulative Discounted'),(
cashoutcumdisc,'Cash Out Cummulative Discounted'),(overdraftdisc,'Overdraft
Discounted')):

786 ax.plot(dates,a,label = l, lw=lw)
787 fig.autofmt_xdate()
788 plt.legend(loc='best',fancybox=True,framealpha=0.5, fontsize = 8)
789 plt.xlabel('Time')
790 plt.ylabel('EGP')
791 plt.title(title + 'Cash-flow')
792 plt.grid(True)
793 plt.savefig(export_folder+'cashflow'+figure_export_format,transparent=True)
794 plt.close('all')
795
796 # export chart of trials
797 log(" - Exporting chart for the trials")
798 data = conn.execute("SELECT trialid, initialnpv, trialnpv, bestnpv FROM trials;"

- 17 -

www.manaraa.com

).fetchall()
799 trialid = [a[0] for a in data]
800 initialnpv = [a[1] for a in data]
801 trialnpv = [a[2] for a in data]
802 bestnpv = [a[3] for a in data]
803 fig, ax = plt.subplots(1)
804 lw = 0.5
805 for a, l in ((initialnpv,'Initial NPV'), (bestnpv,'Best NPV')):
806 ax.plot(trialid,a, label = l, lw= 2 * lw)
807 ax.plot(trialid, trialnpv, 'o', label = 'Trial NPV', lw=lw)
808 plt.legend(loc='best',fancybox=True,framealpha=0.5, fontsize = 8)
809 plt.xlabel('Trial #')
810 plt.ylabel('NPV')
811 plt.title(title + 'Optimization trials')
812 plt.grid(True)
813 plt.margins(0.05)
814 plt.savefig(export_folder+'optimization_trials'+figure_export_format,transparent=

True)
815 plt.close('all')
816
817 # export optimization gantt chart
818 try:
819 log(' - Exporting Optimized Gantt Charts')
820 projects = conn.execute("SELECT projectid, start, finish FROM projects;").

fetchall()
821 for p in projectids:
822 export_file_name = 'optimizedganttchart' + p + figure_export_format
823 data = conn.execute("SELECT activityid,es,ef,lf,os,of FROM activities

WHERE projectid = '%s';"%p).fetchall()
824 data.reverse()
825 activityid = [a[0] for a in data]
826 activityn = range(len(activityid))
827 adict = {}
828 for aid, an in zip(activityid, activityn):
829 adict[aid] = an
830 es = [a[1] for a in data]
831 ef = [a[2] for a in data]
832 lf = [a[3] for a in data]
833 ost = [a[4] for a in data]
834 of = [a[5] for a in data]
835 es = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.split

('-')[2])) for a in es]
836 ef = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.split

('-')[2])) for a in ef]
837 lf = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.split

('-')[2])) for a in lf]
838 ost = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.

split('-')[2])) for a in ost]
839 of = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.split

('-')[2])) for a in of]
840 fig, ax = plt.subplots(1)
841 lw = 2
842 ax.hlines(range(len(activityid)),es,lf,lw=0.7*lw, color = 'grey', label=

'Activity Range (ES to LF)')
843 #~ ax.hlines(range(len(activityid)),of,lf,lw=0.7*lw, color = 'grey',

label= 'Total Float')
844 ax.hlines(range(len(activityid)),ost,of,lw=lw, color = 'blue', label=

'Non-critical Activities')
845 if None not in lf:
846 critaid = []
847 ces = []
848 cef= []
849 clf = []
850 for a in zip(range(len(activityid)),es,ef,lf):
851 if a[2] == a[3]:
852 critaid.append(a[0])
853 ces.append(a[1])
854 cef.append(a[2])

- 18 -

www.manaraa.com

855 clf.append(a[3])
856 ax.hlines(critaid,ces,cef,lw=lw, color = 'red', label= 'Critical

Activities')
857 plt.yticks(range(len(activityid)),['' for a in activityid], size = 2)
858 fig.autofmt_xdate()
859 # add arrows for the relationships
860 data = conn.execute("SELECT activity1id, activity1os, activity1of,

activity2id, activity2os, activity2of, type FROM big WHERE projectid =
'%s';"%p).fetchall()

861 for activity1id, activity1os, activity1of, activity2id, activity2os,
activity2of, rtype in zip([a[0] for a in data], [parse_date(a[1]) for a
in data], [parse_date(a[2]) for a in data], [a[3] for a in data], [
parse_date(a[4]) for a in data], [parse_date(a[5]) for a in data], [a[6]
for a in data]):

862 activity1n = adict[activity1id]
863 activity2n = adict[activity2id]
864 if rtype in ['fs','FS','fS','Fs']:
865 plt.annotate("", xy=(activity1of, activity1n), xycoords='data',

xytext=(activity2os, activity2n), textcoords='data', arrowprops=
dict(arrowstyle="<-", lw = 0.2))

866 if rtype in ['ss','SS','sS','Ss']:
867 plt.annotate("", xy=(activity1os, activity1n), xycoords='data',

xytext=(activity2os, activity2n), textcoords='data', arrowprops=
dict(arrowstyle="<-", lw = 0.2))

868 if rtype in ['ff','FF','fS','Fs']:
869 plt.annotate("", xy=(activity1of, activity1n), xycoords='data',

xytext=(activity2of, activity2n), textcoords='data', arrowprops=
dict(arrowstyle="<-", lw = 0.2))

870 if rtype in ['sf','SF','sF','Fs']:
871 plt.annotate("", xy=(activity1os, activity1n), xycoords='data',

xytext=(activity2of, activity2n), textcoords='data', arrowprops=
dict(arrowstyle="<-", lw = 0.2))

872 plt.xlabel('Time')
873 plt.ylabel('Activities')
874 plt.title(title + 'Optimized Gantt Chart - ' + p)
875 xticks = [min(es) ,max(ef)]
876 plt.xticks(xticks,xticks)
877 plt.legend(loc='best',fancybox=True,framealpha=0.5, fontsize = 8)
878 plt.margins(0.05)
879 plt.savefig(export_folder+export_file_name,transparent=True)
880 plt.close('all')
881 except Exception as e:
882 log(" - Failed to export optimized gantt charts, skipping")
883
884 # export optimization gantt chart without relationship arrows
885 try:
886 log(' - Exporting Optimized Gantt Charts without relationship arrows')
887 projects = conn.execute("SELECT projectid, start, finish FROM projects;").

fetchall()
888 for p in projectids:
889 export_file_name = 'optimizedganttchartnoarrows' + p + figure_export_format
890 data = conn.execute("SELECT activityid,es,ef,lf,os,of FROM activities

WHERE projectid = '%s';"%p).fetchall()
891 data.reverse()
892 activityid = [a[0] for a in data]
893 activityn = range(len(activityid))
894 adict = {}
895 for aid, an in zip(activityid, activityn):
896 adict[aid] = an
897 es = [a[1] for a in data]
898 ef = [a[2] for a in data]
899 lf = [a[3] for a in data]
900 ost = [a[4] for a in data]
901 of = [a[5] for a in data]
902 es = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.split

('-')[2])) for a in es]
903 ef = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.split

('-')[2])) for a in ef]

- 19 -

www.manaraa.com

904 lf = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.split
('-')[2])) for a in lf]

905 ost = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.
split('-')[2])) for a in ost]

906 of = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.split
('-')[2])) for a in of]

907 fig, ax = plt.subplots(1)
908 lw = 2
909 ax.hlines(range(len(activityid)),es,lf,lw=0.7*lw, color = 'grey', label=

'Activity Range (ES to LF)')
910 #~ ax.hlines(range(len(activityid)),of,lf,lw=0.7*lw, color = 'grey',

label= 'Total Float')
911 ax.hlines(range(len(activityid)),ost,of,lw=lw, color = 'blue', label=

'Non-critical Activities')
912 if None not in lf:
913 critaid = []
914 ces = []
915 cef= []
916 clf = []
917 for a in zip(range(len(activityid)),es,ef,lf):
918 if a[2] == a[3]:
919 critaid.append(a[0])
920 ces.append(a[1])
921 cef.append(a[2])
922 clf.append(a[3])
923 ax.hlines(critaid,ces,cef,lw=lw, color = 'red', label= 'Critical

Activities')
924 plt.yticks(range(len(activityid)),['' for a in activityid], size = 2)
925 fig.autofmt_xdate()
926 plt.xlabel('Time')
927 plt.ylabel('Activities')
928 plt.title(title + 'Optimized Gantt Chart - ' + p)
929 xticks = [min(es) ,max(ef)]
930 plt.xticks(xticks,xticks)
931 plt.legend(loc='best',fancybox=True,framealpha=0.5, fontsize = 8)
932 plt.margins(0.05)
933 plt.savefig(export_folder+export_file_name,transparent=True)
934 plt.close('all')
935 except Exception as e:
936 log(" - Failed to export optimized gantt charts, skipping")
937
938 # Export optimized cashflow charts
939 try:
940 log(" - Exporting optimized cashflow")
941 data = conn.execute("SELECT

date,cashincum,cashoutcum,overdraft,cashincumdisc,cashoutcumdisc,overdraftdisc
 from cashflowall;").fetchall()

942 dates = [a[0] for a in data]
943 dates = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.split(

'-')[2])) for a in dates]
944 cashincum = [a[1] for a in data]
945 cashoutcum = [a[2] for a in data]
946 overdraft = [a[3] for a in data]
947 cashincumdisc = [a[4] for a in data]
948 cashoutcumdisc = [a[5] for a in data]
949 overdraftdisc = [a[6] for a in data]
950 data = conn.execute("SELECT

date,cashincum,cashoutcum,overdraft,cashincumdisc,cashoutcumdisc,overdraftdisc
 from cashflowallopt;").fetchall()

951 datesopt = [a[0] for a in data]
952 datesopt = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.

split('-')[2])) for a in datesopt]
953 cashincumopt = [a[1] for a in data]
954 cashoutcumopt = [a[2] for a in data]
955 overdraftopt = [a[3] for a in data]
956 cashincumdiscopt = [a[4] for a in data]
957 cashoutcumdiscopt = [a[5] for a in data]
958 overdraftdiscopt = [a[6] for a in data]

- 20 -

www.manaraa.com

959 plt.close('all')
960
961 fig, ax = plt.subplots(1)
962 lw = 0.5
963 for a, l in ((cashincum,'Cash In Cummulative'),(cashoutcum,'Cash Out

Cummulative'),(overdraft,'Overdraft'),(cashincumdisc,'Cash Out Cummulative
Discounted'),(cashoutcumdisc,'Cash Out Cummulative Discounted'),(
overdraftdisc,'Overdraft Discounted')):

964 ax.plot(dates,a,label = l, lw=lw)
965 for a, l in ((cashincumopt,'Optimized Cash In Cummulative'),(cashoutcumopt,

'Optimized Cash Out Cummulative'),(overdraftopt,'Optimized Overdraft'),(
cashincumdiscopt,'Optimized Cash Out Cummulative Discounted'),(
cashoutcumdiscopt,'Optimized Cash Out Cummulative Discounted'),(
overdraftdiscopt,'Optimized Overdraft Discounted')):

966 ax.plot(dates,a,label = l, lw=lw)
967 fig.autofmt_xdate()
968 plt.legend(loc='best',fancybox=True,framealpha=0.5, fontsize = 8)
969 plt.xlabel('Time')
970 plt.ylabel('EGP')
971 plt.title(title + 'Cash-flow - Combined')
972 plt.grid(True)
973 plt.savefig(export_folder+'optimized_cashflow_combined'+figure_export_format,

transparent=True)
974 plt.close('all')
975
976 fig, ax = plt.subplots(1)
977 lw = 0.5
978 for a, l in ((cashincum,'Cash In Cummulative'),(cashoutcum,'Cash Out

Cummulative'),(overdraft,'Overdraft')):
979 ax.plot(dates,a,label = l, lw=lw)
980 for a, l in ((cashincumopt,'Optimized Cash In Cummulative'),(cashoutcumopt,

'Optimized Cash Out Cummulative'),(overdraftopt,'Optimized Overdraft')):
981 ax.plot(dates,a,label = l, lw=lw)
982 fig.autofmt_xdate()
983 plt.legend(loc='best',fancybox=True,framealpha=0.5, fontsize = 8)
984 plt.xlabel('Time')
985 plt.ylabel('EGP')
986 plt.title(title + 'Optimized Cash-flow (Comparision)')
987 plt.grid(True)
988 plt.savefig(export_folder+'optimized_cashflow_fv'+figure_export_format,

transparent=True)
989 plt.close('all')
990
991 fig, ax = plt.subplots(1)
992 lw = 0.5
993 for a, l in ((overdraft,'Overdraft'), (overdraftopt,'Optimized Overdraft')):
994 ax.plot(dates,a,label = l, lw=lw)
995 fig.autofmt_xdate()
996 plt.legend(loc='best',fancybox=True,framealpha=0.5, fontsize = 8)
997 plt.xlabel('Time')
998 plt.ylabel('EGP')
999 plt.title(title + 'Optimized Overdraft (Comparision)')
1000 plt.grid(True)
1001 plt.savefig(export_folder+'optimized_cashflow_overdraft'+figure_export_format

,transparent=True)
1002 plt.close('all')
1003
1004 fig, ax = plt.subplots(1)
1005 lw = 0.5
1006 for a, l in ((overdraft,'Overdraft'), (overdraftopt,'Optimized Overdraft'), (

overdraftdisc,'Overdraft Discounted'), (overdraftdiscopt,'Optimized
Overdraft Discounted')):

1007 ax.plot(dates,a,label = l, lw=lw)
1008 fig.autofmt_xdate()
1009 plt.legend(loc='best',fancybox=True,framealpha=0.5, fontsize = 8)
1010 plt.xlabel('Time')
1011 plt.ylabel('EGP')
1012 plt.title(title + 'Optimized Overdraft Discounted (Comparision)')

- 21 -

www.manaraa.com

1013 plt.grid(True)
1014 plt.savefig(export_folder+'optimized_cashflow_overdraft_discounted'+

figure_export_format,transparent=True)
1015 plt.close('all')
1016 except Exception as e:
1017 log(" - Could not export optimized cashflow, skipping")
1018
1019 log(" - Done")
1020
1021 def optimize(): # optimize
1022 log("OPTIMIZING")
1023 global conn
1024 starttime = datetime.datetime.now()
1025 # Create list of table names
1026 tables = [a[0] for a in conn.execute("Select name FROM sqlite_master WHERE

type='table';").fetchall()]
1027 tables.remove('trials')
1028 tablesbackup = [a+'bck' for a in tables]
1029 # initiate the npv with the current npv using es and ef
1030 initialnpv = conn.execute("SELECT npv FROM portfolio;").fetchall()[0][0]
1031 bestnpv = initialnpv
1032 trialnpv = bestnpv
1033 conn.execute("DELETE FROM trials;")
1034 conn.commit()
1035 conn.execute("INSERT INTO trials (trialid, initialnpv, trialnpv, bestnpv) VALUES

('%s','%s','%s','%s');"%(0,initialnpv,trialnpv,bestnpv))
1036 # start the trials
1037 trialid = 0
1038 condition = True
1039 while condition:
1040 trialid += 1
1041 log(' <> %s Trial %s'%(datetime.datetime.now() - starttime,trialid))
1042 conn.execute("UPDATE activities SET lag = NULL;")
1043 conn.execute("UPDATE activities SET os = NULL;")
1044 conn.execute("UPDATE activities SET of = NULL;")
1045 conn.execute("UPDATE activities SET lag = 0 WHERE cost = 0 OR tf = 0;") #

activities that are critical or have no cost don't need to be optimized'
1046 conn.execute("UPDATE activities SET os = es WHERE lag = 0;")
1047 conn.execute("UPDATE activities SET of = ef WHERE lag = 0;")
1048 # randomize the lags, must be done outside of the database because the

random function in sqlite3 is biased
1049 for projectid in [a [0] for a in conn.execute("SELECT projectid FROM

projects;").fetchall()]:
1050 for activityid in [a[0] for a in conn.execute("SELECT activityid from

activities WHERE projectid = '%s' AND tf > 0 AND cost > 0;"%projectid).
fetchall()]:

1051 tf = conn.execute("SELECT tf FROM activities WHERE projectid = '%s'
AND activityid = '%s';"%(projectid, activityid)).fetchall()[0][0]

1052 lag = random.randint(0, tf)
1053 conn.execute("UPDATE activities SET lag = '%s' WHERE projectid =

'%s' AND activityid = '%s'"%(lag, projectid, activityid)) # update
the lag

1054 # calculate the new schedule for the trial using the new lags
1055 calculate('opt')
1056 # get current opt npv and compare
1057 trialnpv = conn.execute("SELECT npvopt FROM portfolio;").fetchall()[0][0]
1058 if trialnpv > bestnpv: # check if the current trial yields a better result

and store it
1059 bestnpv = trialnpv
1060 for table, bck in zip(tables,tablesbackup):
1061 conn.execute("DROP TABLE IF EXISTS %s;"%bck)
1062 conn.execute("CREATE TABLE %s AS SELECT * FROM %s;"%(bck,table))
1063 d = [a[0] for a in conn.execute("select DISTINCT(bestnpv) from trials

Order BY bestnpv DESC LIMIT 2;").fetchall()]
1064 if len(d) >= 2:
1065 if (bestnpv / (sum(d)/len(d))) < optimization_stoppingpercentage:
1066 condition = False
1067 if conn.execute("SELECT COUNT(bestnpv) FROM trials WHERE bestnpv = (SELECT

- 22 -

www.manaraa.com

MAX(bestnpv) from trials);").fetchall()[0][0] >=
optimization_stoppingmaxtrials:

1068 condition = False
1069 conn.execute("INSERT INTO trials (trialid, initialnpv, trialnpv, bestnpv)

VALUES ('%s','%s','%s','%s');"%(trialid,initialnpv,trialnpv,bestnpv))
1070 log(' <> %s Trial %s ended. Trial NPV = %s, Best NPV = %s'%(datetime.datetime

.now() - starttime,trialid, trialnpv, bestnpv))
1071 if bestnpv > initialnpv:
1072 for table,bck in zip(tables,tablesbackup):
1073 conn.execute("DROP TABLE IF EXISTS %s;"%table)
1074 conn.execute("CREATE TABLE %s AS SELECT * FROM %s;"%(table,bck))
1075 conn.execute("DROP TABLE IF EXISTS %s;"%bck)
1076 conn.commit()
1077 conn.execute("VACUUM;")
1078 conn.commit()
1079 log(' <> %s Optimization ended after %s trial. Initial NPV = %s, Optimized NPV =

%s'%(datetime.datetime.now() - starttime,trialid, initialnpv, bestnpv))
1080
1081 def verificate():
1082 new_database()
1083 create_a_portfolio()
1084 #~ import_uptown_projects()
1085 database_info()
1086 calculate("normal")
1087 optimize()
1088 export()
1089 database_info()
1090
1091 def validate():
1092 new_database()
1093 #~ create_a_portfolio()
1094 import_uptown_projects()
1095 database_info()
1096 calculate("normal")
1097 optimize()
1098 export()
1099 database_info()
1100
1101 # -------- GUI PART ------------
1102 class Drop_menu: # generic drop list menu for the GUI, because the one in tkinter sucks
1103 def show(self):
1104 try:
1105 self.menu.destroy()
1106 except:
1107 pass
1108 self.menu = tk.OptionMenu(self.master, self.var, *self.options)
1109 self.menu.pack()
1110
1111 def options(self, options):
1112 self.options = options
1113 if len(options) > 0:
1114 self.var.set(options[0])
1115 else:
1116 self.var.set('')
1117
1118 def __init__(self, master):
1119 self.master = master
1120 self.var = tk.StringVar()
1121 self.options = []
1122
1123 class Gantt_chart: # Gantt chart for the whole portfolio normal or otimized
1124 margin = 40
1125 lw = 2
1126 project = 'all'
1127 deltat = 10
1128 deltaa = 15
1129 barwidth = 5
1130 def show(self):

- 23 -

www.manaraa.com

1131 global conn
1132 self.canvas.delete('all')
1133 data = conn.execute("SELECT projectid, activityid, es, ef, lf FROM

activities;").fetchall()
1134 activityindex = {}
1135 for n, projectid, activityid in zip([a for a in range(len(data))], [a[0] for

a in data], [a[1] for a in data]):
1136 activityindex[projectid + activityid] = n
1137 esl = [parse_date(a[2]) for a in data]
1138 efl = [parse_date(a[3]) for a in data]
1139 lfl = [parse_date(a[4]) for a in data]
1140 na = len(data)
1141 mint = min(esl)
1142 maxt = max(lfl)
1143 totalt = (maxt - mint).days
1144 self.canvas['scrollregion'] = (0, 0, (totalt * self.deltat) + 2*self.margin,

(na * self.deltaa) + 2 * self.margin)
1145 # margins
1146 self.canvas.create_rectangle((self.margin, self.margin), (self.margin +

totalt * self.deltat, self.margin + na * self.deltaa))
1147 for a in range(1, totalt):
1148 self.canvas.create_line(((self.margin + a * self.deltat, self.margin), (

self.margin + a * self.deltat, self.margin + na * self.deltaa)), fill =
'grey80')

1149 if a % 10 == 0:
1150 self.canvas.create_text((self.margin + a * self.deltat, self.margin -

10), anchor = 'center', text = str(mint + datetime.timedelta(a)))
1151 self.canvas.create_line(((self.margin + a * self.deltat, self.margin

), (self.margin + a * self.deltat, self.margin + na * self.deltaa)),
fill = 'black')

1152 # add activities
1153 for n, es, ef, lf in zip([a for a in range(len(data))], esl,efl,lfl):
1154 if ef == lf:
1155 self.canvas.create_rectangle(((self.margin + (es - mint).days * self.

deltat, self.margin + n * self.deltaa),(self.margin + (ef - mint).
days * self.deltat, self.margin + n * self.deltaa + self.barwidth)),
fill = 'red')

1156 else:
1157 self.canvas.create_rectangle(((self.margin + (es - mint).days * self.

deltat, self.margin + n * self.deltaa),(self.margin + (ef - mint).
days * self.deltat, self.margin + n * self.deltaa + self.barwidth)),
fill = 'green')

1158 self.canvas.create_rectangle(((self.margin + (ef - mint).days * self.
deltat, self.margin + n * self.deltaa + 0.3 * self.barwidth),(self.
margin + (lf - mint).days * self.deltat, self.margin + n * self.
deltaa + 0.7 * self.barwidth)), fill = 'blue')

1159 # add relatiobships
1160 data = conn.execute("SELECT activity1id, activity1es, activity1ef,

activity2id, activity2es, activity2ef, type, projectid FROM big").fetchall()
1161 for activity1id, activity1es, activity1ef, activity2id, activity2es,

activity2ef, rtype, projectid in zip([a[0] for a in data], [parse_date(a[1])
for a in data], [parse_date(a[2]) for a in data], [a[3] for a in data], [
parse_date(a[4]) for a in data], [parse_date(a[5]) for a in data], [a[6] for
a in data], [a[7] for a in data]):

1162 activity1n = activityindex[projectid + activity1id]
1163 activity2n = activityindex[projectid + activity2id]
1164 if rtype in ['fs','FS','fS','Fs']:
1165 self.canvas.create_line(((self.margin + (activity1ef - mint).days *

self.deltat, self.margin + activity1n * self.deltaa),(self.margin + (
activity2es - mint).days * self.deltat, self.margin + activity2n *
self.deltaa)), arrow = 'last')

1166 if rtype in ['ss','SS','sS','Ss']:
1167 self.canvas.create_line(((self.margin + (activity1es - mint).days *

self.deltat, self.margin + activity1n * self.deltaa),(self.margin + (
activity2es - mint).days * self.deltat, self.margin + activity2n *
self.deltaa)), arrow = 'last')

1168 if rtype in ['ff','FF','fS','Fs']:
1169 self.canvas.create_line(((self.margin + (activity1ef - mint).days *

- 24 -

www.manaraa.com

self.deltat, self.margin + activity1n * self.deltaa),(self.margin + (
activity2ef - mint).days * self.deltat, self.margin + activity2n *
self.deltaa)), arrow = 'last')

1170 if rtype in ['sf','SF','sF','Fs']:
1171 self.canvas.create_line(((self.margin + (activity1es - mint).days *

self.deltat, self.margin + activity1n * self.deltaa),(self.margin + (
activity2ef - mint).days * self.deltat, self.margin + activity2n *
self.deltaa)), arrow = 'last')

1172
1173 def show_opt(self):
1174 global conn
1175 self.canvas.delete('all')
1176 data = conn.execute("SELECT projectid, activityid, es, ef, os, of, lf FROM

activities;").fetchall()
1177 activityindex = {}
1178 for n, projectid, activityid in zip([a for a in range(len(data))], [a[0] for

a in data], [a[1] for a in data]):
1179 activityindex[projectid + activityid] = n
1180 esl = [parse_date(a[2]) for a in data]
1181 efl = [parse_date(a[3]) for a in data]
1182 osl = [parse_date(a[4]) for a in data]
1183 ofl = [parse_date(a[5]) for a in data]
1184 lfl = [parse_date(a[6]) for a in data]
1185 na = len(data)
1186 mint = min(esl)
1187 maxt = max(lfl)
1188 totalt = (maxt - mint).days
1189 self.canvas['scrollregion'] = (0, 0, (totalt * self.deltat) + 2*self.margin,

(na * self.deltaa) + 2 * self.margin)
1190 # margins
1191 self.canvas.create_rectangle((self.margin, self.margin), (self.margin +

totalt * self.deltat, self.margin + na * self.deltaa))
1192 for a in range(1, totalt):
1193 self.canvas.create_line(((self.margin + a * self.deltat, self.margin), (

self.margin + a * self.deltat, self.margin + na * self.deltaa)), fill =
'grey80')

1194 if a % 21 == 0:
1195 self.canvas.create_text((self.margin + a * self.deltat, self.margin -

10), anchor = 'center', text = str(mint + datetime.timedelta(a)))
1196 self.canvas.create_line(((self.margin + a * self.deltat, self.margin

), (self.margin + a * self.deltat, self.margin + na * self.deltaa)),
fill = 'black')

1197 # add activities
1198 for n, es, ef, os, of, lf in zip([a for a in range(len(data))], esl, efl, osl

, ofl, lfl):
1199 if ef == lf:
1200 self.canvas.create_rectangle(((self.margin + (es - mint).days * self.

deltat, self.margin + n * self.deltaa),(self.margin + (ef - mint).
days * self.deltat, self.margin + n * self.deltaa + self.barwidth)),
fill = 'red')

1201 else:
1202 self.canvas.create_rectangle(((self.margin + (es - mint).days * self.

deltat, self.margin + n * self.deltaa + 0.3 * self.barwidth),(self.
margin + (os - mint).days * self.deltat, self.margin + n * self.
deltaa + 0.7 * self.barwidth)), fill = 'grey')

1203 self.canvas.create_rectangle(((self.margin + (os - mint).days * self.
deltat, self.margin + n * self.deltaa),(self.margin + (of - mint).
days * self.deltat, self.margin + n * self.deltaa + self.barwidth)),
fill = 'green')

1204 self.canvas.create_rectangle(((self.margin + (of - mint).days * self.
deltat, self.margin + n * self.deltaa + 0.3 * self.barwidth),(self.
margin + (lf - mint).days * self.deltat, self.margin + n * self.
deltaa + 0.7 * self.barwidth)), fill = 'grey')

1205 # add relatiobships
1206 data = conn.execute("SELECT activity1id, activity1os, activity1of,

activity2id, activity2os, activity2of, type, projectid FROM big").fetchall()
1207 for activity1id, activity1os, activity1of, activity2id, activity2os,

activity2of, rtype, projectid in zip([a[0] for a in data], [parse_date(a[1])

- 25 -

www.manaraa.com

for a in data], [parse_date(a[2]) for a in data], [a[3] for a in data], [
parse_date(a[4]) for a in data], [parse_date(a[5]) for a in data], [a[6] for
a in data], [a[7] for a in data]):

1208 activity1n = activityindex[projectid + activity1id]
1209 activity2n = activityindex[projectid + activity2id]
1210 if rtype in ['fs','FS','fS','Fs']:
1211 self.canvas.create_line(((self.margin + (activity1of - mint).days *

self.deltat, self.margin + activity1n * self.deltaa),(self.margin + (
activity2os - mint).days * self.deltat, self.margin + activity2n *
self.deltaa)), arrow = 'last')

1212 if rtype in ['ss','SS','sS','Ss']:
1213 self.canvas.create_line(((self.margin + (activity1os - mint).days *

self.deltat, self.margin + activity1n * self.deltaa),(self.margin + (
activity2os - mint).days * self.deltat, self.margin + activity2n *
self.deltaa)), arrow = 'last')

1214 if rtype in ['ff','FF','fS','Fs']:
1215 self.canvas.create_line(((self.margin + (activity1of - mint).days *

self.deltat, self.margin + activity1n * self.deltaa),(self.margin + (
activity2of - mint).days * self.deltat, self.margin + activity2n *
self.deltaa)), arrow = 'last')

1216 if rtype in ['sf','SF','sF','Fs']:
1217 self.canvas.create_line(((self.margin + (activity1os - mint).days *

self.deltat, self.margin + activity1n * self.deltaa),(self.margin + (
activity2of - mint).days * self.deltat, self.margin + activity2n *
self.deltaa)), arrow = 'last')

1218
1219 def __init__(self, master, normal_or_opt):
1220 self.frame = tk.Frame(master, bg = 'white')
1221 self.frame.pack(fill = 'both', expand = True)
1222 self.canvas = tk.Canvas(self.frame, bg = 'white')
1223 self.yscr = tk.Scrollbar(self.frame, orient = 'vertical', command = self.

canvas.yview)
1224 self.xscr = tk.Scrollbar(self.frame, orient = 'horizontal', command = self.

canvas.xview)
1225 self.canvas.configure(xscrollcommand = self.xscr.set, yscrollcommand = self.

yscr.set)
1226 self.yscr.pack(fill = 'y', side = 'right')
1227 self.xscr.pack(fill = 'x', side = 'bottom')
1228 self.canvas.pack(fill = 'both', expand = True, side = 'left')
1229 if normal_or_opt == 'normal':
1230 self.show()
1231 elif normal_or_opt == 'opt':
1232 self.show_opt()
1233
1234 class Table: # this is generic a table widget made using using ttk.treeview
1235 width = 100
1236 global conn
1237 def delete(self, *arg):
1238 if self.table.focus() != '':
1239 data = {}
1240 for name, value in zip(self.table['columns'], self.table.item(self.table.

focus())['values']):
1241 data[name] = value
1242 if self.table_scope == 'projects':
1243 conn.execute("Delete FROM projects WHERE projectid = ?;",(data[

'projectid'],))
1244 elif self.table_scope == 'activities':
1245 conn.execute("Delete FROM activities WHERE projectid = ? AND

activityid = ?;",(data['projectid'], data['activityid']))
1246 elif self.table_scope == 'relationships':
1247 conn.execute("Delete FROM relationships WHERE projectid = ? AND

activity1id = ? AND activity2id = ? AND type = ?",(data['projectid'],
data['activity1id'], data['activity2id'], data['type']))

1248 self.refresh()
1249 conn.commit()
1250
1251 def create(self):
1252 Form_new(self.master, self.table_scope)

- 26 -

www.manaraa.com

1253 self.refresh()
1254
1255 def refresh(self):
1256 for child in self.bottomframe.winfo_children():
1257 child.destroy()
1258 self.table = ttk.Treeview(self.bottomframe)
1259 self.table['show'] = 'headings'
1260 self.table['selectmode'] = 'browse'
1261 self.yscr = tk.Scrollbar(self.bottomframe, orient = "vertical", command =

self.table.yview)
1262 self.xscr = tk.Scrollbar(self.bottomframe, orient = "horizontal", command =

self.table.xview)
1263 self.yscr.pack(fill = 'y', side = "right")
1264 self.xscr.pack(fill = 'x', side = "bottom")
1265 self.table["yscrollcommand"] = self.yscr.set
1266 self.table["xscrollcommand"] = self.xscr.set
1267 self.table.pack(fill = "both", side = 'left')
1268 # get the data
1269 global conn
1270 cur = conn.cursor()
1271 cur.execute("SELECT * FROM %s"%self.table_scope)
1272 headings = [a[0] for a in cur.description]
1273 data = cur.fetchall()
1274 # set the columns
1275 self.table['columns'] = headings
1276 self.table['displaycolumns'] = headings
1277 for head in headings:
1278 self.table.column(head, width = self.width, minwidth = self.width,

stretch = False, anchor = 'center')
1279 self.table.heading(head, text = head)
1280 # set the data
1281 for r in data:
1282 self.table.insert("", 'end', values = r)
1283
1284 def __init__(self, master, table_scope):
1285 self.master = master
1286 self.table_scope = table_scope
1287 self.frame = tk.Frame(master, bg = 'white')
1288 self.frame.pack(fill='both', expand = True)
1289 self.topframe = tk.Frame(self.frame)
1290 self.topframe.pack(fill = 'x')
1291 self.bottomframe = tk.Frame(self.frame)
1292 self.bottomframe.pack(fill = 'both', expand = True)
1293 # Create the buttons at the top
1294 if self.table_scope in ('projects', 'activities', 'relationships'):
1295 tk.Button(self.topframe, text = 'Create New', command = self.create).pack

(side = 'left')
1296 tk.Button(self.topframe, text = 'Delete Selected', command = self.delete

).pack(side = 'left')
1297 tk.Button(self.topframe, text = 'Refresh', command = self.refresh).pack(

side = 'left')
1298 self.refresh()
1299
1300 class Plot: # this is for generic financial plotting with dates on the x-axis
1301 title = ''
1302 data = []
1303 lw = 2
1304 colors = ['red', 'blue', 'green', 'brown', 'orange']
1305
1306 def clear(self):
1307 self.title = ''
1308 self.data = []
1309 self.canvas.delete('all')
1310 self.show()
1311
1312 def scalex(self,x):
1313 newx = (self.width + self.margin) + x * (self.width - self.margin - self.

margin)/(self.widthself.maxx - self.minx)

- 27 -

www.manaraa.com

1314
1315 def scaley(self, y):
1316 newy = (self.height + self.topmargin) + y * (self.width - self.margin - self.

margin)/(self.widthself.maxx - self.minx)
1317
1318 def show(self, *ev):
1319 self.height = self.master.winfo_height()
1320 self.width = self.master.winfo_width()
1321 self.margin = max(0.05 * self.width, 0.05 * self.width)
1322 self.topmargin = 2 * self.margin
1323 self.canvas.delete('all')
1324 if self.data == []: # break if empty
1325 return 0
1326 # set the boundaries
1327 allx = []
1328 ally = []
1329 for plot in self.data:
1330 allx += plot['x']
1331 ally += plot['y']
1332 self.minx = min(allx)
1333 self.miny = min(ally)
1334 self.maxx = max(allx)
1335 self.maxy = max(ally)
1336 # create the borders
1337 self.canvas.create_line(((self.margin, self.height - self.margin), (self.

width-self.margin, self.height - self.margin)))
1338 self.canvas.create_line(((self.margin, self.topmargin), (self.width-self.

margin, self.topmargin)))
1339 self.canvas.create_line(((self.margin, self.height - self.margin), (self.

margin, self.topmargin)))
1340 self.canvas.create_line(((self.width - self.margin, self.height - self.margin

), (self.width-self.margin, self.topmargin)))
1341 # plot the lines
1342 for plot in self.data:
1343 x = [(a - self.minx)/(self.maxx - self.minx) * (self.width - self.margin

- self.margin) for a in plot['x']]
1344 y = [(1 - (a - self.miny)/(self.maxy - self.miny)) * (self.height - self.

margin - self.topmargin) for a in plot['y']]
1345 x = [a + self.margin for a in x]
1346 y = [a + self.topmargin for a in y]
1347 x = [int(a) for a in x]
1348 y = [int(a) for a in y]
1349 self.canvas.create_line([a for a in zip(x,y)], width = self.lw, fill =

plot['color'])
1350 # plot line at zero
1351 y = (1 - (0 - self.miny)/(self.maxy - self.miny)) * (self.height - self.

margin - self.topmargin)
1352 y = y + self.topmargin
1353 y = int(y)
1354 self.canvas.create_line(((self.margin, y),(self.width - self.margin, y)))
1355 # create legend
1356 self.legendx = self.margin + 20
1357 self.legendy = self.topmargin + 20
1358 loc = self.legendy
1359 for plot in self.data:
1360 self.canvas.create_line(((self.legendx + 10, loc),(self.legendx + 30, loc

)), fill = plot['color'], width = self.lw)
1361 self.canvas.create_text((self.legendx + 40, loc), text = plot['title'],

anchor = 'w')
1362 loc += 15
1363 # add title
1364 self.canvas.create_text((self.width/2, self.topmargin/2), text = self.title,

font = ("arial",20), anchor = 'center')
1365 # add the ticks
1366 for a in [self.minx, self.maxx] + [self.minx + datetime.timedelta(a * (self.

maxx - self.minx).days / 10) for a in range(10)]:
1367 location = (a - self.minx)/(self.maxx - self.minx) * (self.width - self.

margin - self.margin)

- 28 -

www.manaraa.com

1368 location = location + self.margin
1369 location = int(location)
1370 self.canvas.create_line((location, self.height - self.margin + 5), (

location, self.height - self.margin + 10))
1371 self.canvas.create_text((location, self.height - self.margin + 20), text

= str(a), anchor = 'center')
1372 for a in [a for a in range(int(self.miny), int(self.maxy), int((self.maxy -

self.miny) / 20))] + [int(self.maxy)] + [0]:
1373 location = (1 - (a - self.miny)/(self.maxy - self.miny)) * (self.height -

self.margin - self.topmargin)
1374 location = location + self.topmargin
1375 location = int(location)
1376 self.canvas.create_line((self.margin - 5, location), (self.margin - 10,

location))
1377 self.canvas.create_text((self.margin - 20, location), text = str(a),

anchor = 'e')
1378
1379 def add_plot(self, title, x, y):
1380 plot = {}
1381 plot['title'] = title
1382 for a in y:
1383 if a == None:
1384 y[y.index(a)] = 0
1385 plot['x'] = x
1386 plot['y'] = y
1387 plot['color'] = self.colors[len(self.data)]
1388 self.data.append(plot)
1389 self.show()
1390
1391 def set_title(self, title):
1392 self.title = title
1393 self.show
1394
1395 def __init__(self, master):
1396 self.frame = tk.Frame(master)
1397 self.frame.pack(fill = 'both', expand = True)
1398 self.master = master
1399 self.canvas = tk.Canvas(self.frame, bg = 'white')
1400 self.canvas.pack(fill = 'both', expand = True)
1401 self.canvas.bind("<Configure>",self.show)
1402 self.show()
1403
1404 class Form_new: # a new window to create new stuff
1405 def ok(self, *arg):
1406 if self.focus == 'activities':
1407 projectid = self.projectid_selector.get()
1408 activityid = self.activityid.get()
1409 activityname = self.activityname.get()
1410 duration = self.duration.get()
1411 cost = self.cost.get()
1412 conn.execute("INSERT INTO activities

(projectid,activityid,activityname,duration,cost) VALUES (?,?,?,?,?);", (
projectid,activityid,activityname,duration,cost))

1413 elif self.focus == 'projects':
1414 projectid = self.projectid.get()
1415 projectname = self.projectname.get()
1416 start = self.start.get()
1417 interest = self.interest.get()
1418 markup = self.markup.get()
1419 downpayment = self.downpayment.get()
1420 invoiceinterval = self.invoiceinterval.get()
1421 paymentperiod = self.paymentperiod.get()
1422 retention = self.retention.get()
1423 retentionperiod = self.retentionperiod.get()
1424 conn.execute("INSERT INTO projects

(projectid,projectname,start,interest,markup,downpayment,invoiceinterval,p
aymentperiod,retention,retentionperiod) VALUES (?,?,?,?,?,?,?,?,?,?)", (
projectid, projectname,start,interest,markup,downpayment,invoiceinterval,

- 29 -

www.manaraa.com

paymentperiod,retention,retentionperiod))
1425 elif self.focus == 'relationships':
1426 projectid = self.projectid_selector.get()
1427 activity1id = self.activity1_selector.get()
1428 activity2id = self.activity2_selector.get()
1429 relationship_type = self.type_selector.get()
1430 conn.execute("INSERT INTO relationships

(projectid,activity1id,activity2id,type) VALUES (?,?,?,?)", (projectid,
activity1id,activity2id,relationship_type))

1431 conn.commit()
1432 self.root.destroy()
1433
1434 def selected_a_project(self, *ev):
1435 global conn
1436 try:
1437 activities = [a[0] for a in conn.execute("SELECT activityid FROM

activities WHERE projectid = ?;", (str(self.project_selector.get()),)).
fetchall()]

1438 self.activity1_selector['values'] = activities
1439 self.activity1_selector.set(activities[0])
1440 self.activity2_selector['values'] = activities
1441 self.activity2_selector.set(activities[0])
1442 except:
1443 pass
1444
1445 def create_entry(self, description, widget_name):
1446 tk.Label(self.root, text = description).grid(column = 0, row = self.row,

sticky = 'w')
1447 exec("self.%s = ttk.Entry(self.root)"%widget_name)
1448 exec("self.%s.grid(column = 1, row = self.row, sticky = 'w')"%widget_name)
1449 self.row += 1
1450
1451 def __init__(self, master, projects_or_activities_or_relationships):
1452 self.focus = projects_or_activities_or_relationships
1453 self.master = master
1454 self.root = tk.Toplevel(self.master)
1455 if self.focus == 'projects': title = 'Create New Project'
1456 if self.focus == 'activities': title = 'Create New Activity'
1457 if self.focus == 'relationships': title = 'Create New Relationship'
1458 self.root.title(title)
1459 self.root.geometry('+300+100')
1460 self.root.resizable(height = False, width = False)
1461 self.row = 0
1462 if self.focus in ['activities', 'relationships']:
1463 tk.Label(self.root, text = 'Select Project id:').grid(column = 0, row =

self.row, sticky = 'w')
1464 self.project_selector = ttk.Combobox(self.root)
1465 try:
1466 projects = [a[0] for a in conn.execute("SELECT projectid FROM

projects;").fetchall()]
1467 self.project_selector['values'] = projects
1468 self.project_selector.set(projects[0])
1469 except:
1470 self.project_selector['values'] = []
1471 self.project_selector.bind("<<ComboboxSelected>>", self.selected_a_project)
1472 self.project_selector.grid(column = 1, row = self.row, sticky = 'w')
1473 self.row += 1
1474 if self.focus in ['activities']:
1475 for name, widget in [["New Activity ID: ", "activityid"], ['Activity

Name: ','activityname'], ['Activity Duration: ', 'duration'], ['Activity
Cost: ', 'cost']]:

1476 self.create_entry(name, widget)
1477 if self.focus in ['projects']:
1478 for name, widget in [['Project ID: ', 'projectid'], ['Project Name: ',

'projectname'], ['Start (yyyy-mm-dd): ', 'start'], ['Interest: ',
'interest'], ['Markup: ', 'markup'], ['Downpayment: ', 'downpayment'], [
'Invoice Interval (days): ', 'invoiceinterval'], ['Payment Period
(days): ', 'paymentperiod'], ['Retention: ', 'retention'], ['Retention

- 30 -

www.manaraa.com

Period (days): ', 'retentionperiod']]:
1479 self.create_entry(name, widget)
1480 if self.focus in ['relationships']:
1481 tk.Label(self.root, text = 'Select Activity1 id:').grid(column = 0, row =

self.row, sticky = 'w')
1482 self.activity1_selector = ttk.Combobox(self.root)
1483 self.activity1_selector.grid(column = 1, row = self.row, sticky = 'w')
1484 self.row += 1
1485 tk.Label(self.root, text = 'Select Activity2 id:').grid(column = 0, row =

self.row, sticky = 'w')
1486 self.activity2_selector = ttk.Combobox(self.root)
1487 self.activity2_selector.grid(column = 1, row = self.row, sticky = 'w')
1488 self.row += 1
1489 tk.Label(self.root, text = 'Select Rlationship type:').grid(column = 0,

row = self.row, sticky = 'w')
1490 self.type_selector = ttk.Combobox(self.root)
1491 self.type_selector['values'] = ('FS', 'SS', 'FF', 'SF')
1492 self.type_selector.set('FS')
1493 self.type_selector.grid(column = 1, row = self.row, sticky = 'w')
1494 self.row += 1
1495 tk.Button(self.root, text = "Ok", command = self.ok, width = 15).grid(column

= 0, row = self.row, columnspan = 2)
1496 self.root.bind("<KeyPress-Return>", self.ok)
1497 self.selected_a_project()
1498
1499 class Main_window:
1500 def clear(self):
1501 for child in self.frame.winfo_children():
1502 child.destroy()
1503
1504 def create_table_from_sql(self,table_scope):
1505 self.clear()
1506 self.table = Table(self.frame, table_scope)
1507
1508 def show_gantt_chart(self, normal_or_opt):
1509 self.clear()
1510 Gantt_chart(self.frame, normal_or_opt)
1511
1512 def show_plot(self, arg):
1513 self.clear()
1514 global conn
1515 data = conn.execute("SELECT

date,cashincum,cashoutcum,overdraft,cashincumdisc,cashoutcumdisc,overdraftdisc
 from cashflowall;").fetchall()

1516 dates = [a[0] for a in data]
1517 dates = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.split(

'-')[2])) for a in dates]
1518 cashincum = [a[1] for a in data]
1519 cashoutcum = [a[2] for a in data]
1520 overdraft = [a[3] for a in data]
1521 cashincumdisc = [a[4] for a in data]
1522 cashoutcumdisc = [a[5] for a in data]
1523 overdraftdisc = [a[6] for a in data]
1524 data = conn.execute("SELECT

date,cashincum,cashoutcum,overdraft,cashincumdisc,cashoutcumdisc,overdraftdisc
 from cashflowallopt;").fetchall()

1525 datesopt = [a[0] for a in data]
1526 datesopt = [datetime.date(int(a.split('-')[0]),int(a.split('-')[1]),int(a.

split('-')[2])) for a in datesopt]
1527 cashincumopt = [a[1] for a in data]
1528 cashoutcumopt = [a[2] for a in data]
1529 overdraftopt = [a[3] for a in data]
1530 cashincumdiscopt = [a[4] for a in data]
1531 cashoutcumdiscopt = [a[5] for a in data]
1532 overdraftdiscopt = [a[6] for a in data]
1533 plot = Plot(self.frame)
1534 if arg == 'overdraft':
1535 plot.clear()

- 31 -

www.manaraa.com

1536 plot.add_plot('Overdraft', dates, overdraft)
1537 plot.set_title("OVERDRAFT")
1538 elif arg == 'overdraftopt':
1539 plot.clear()
1540 plot.add_plot('Overdraft', dates, overdraft)
1541 plot.add_plot('Overdraft Optimized', dates, overdraftopt)
1542 plot.set_title("OVERDRAFT (Normal vs. Optimized)")
1543 elif arg == 'cashflow':
1544 plot.clear()
1545 plot.add_plot('CashIn cumulative', dates, cashincum)
1546 plot.add_plot('CashOut cumulative', dates, cashoutcum)
1547 plot.set_title("Cash-Flow")
1548 elif arg == 'cashflowopt':
1549 plot.clear()
1550 plot.add_plot('CashIn cumulative', dates, cashincum)
1551 plot.add_plot('CashOut cumulative', dates, cashoutcum)
1552 plot.add_plot('CashIn cumulative Optimized', dates, cashincumopt)
1553 plot.add_plot('CashOut cumulative Optimized', dates, cashoutcumopt)
1554 plot.set_title("Cash-Flow (Normal vs. Optimized)")
1555 elif arg == 'overdraftdisc':
1556 plot.clear()
1557 plot.add_plot('Overdraft Discounted', dates, overdraftdisc)
1558 plot.set_title("OVERDRAFT Discounted")
1559 elif arg == 'overdraftdiscopt':
1560 plot.clear()
1561 plot.add_plot('Overdraft Discounted', dates, overdraftdisc)
1562 plot.add_plot('Overdraft Discounted Optimized', dates, overdraftdiscopt)
1563 plot.set_title("OVERDRAFT Discounted (Normal vs. Optimized)")
1564 elif arg == 'cashflowdisc':
1565 plot.clear()
1566 plot.add_plot('CashIn cumulative Discounted', dates, cashincumdisc)
1567 plot.add_plot('CashOut cumulative Discounted', dates, cashoutcumdisc)
1568 plot.set_title("Cash-Flow Discounted")
1569 elif arg == 'cashflowdiscopt':
1570 plot.clear()
1571 plot.add_plot('CashIn cumulative Discounted', dates, cashincumdisc)
1572 plot.add_plot('CashOut cumulative Discounted', dates, cashoutcumdisc)
1573 plot.add_plot('CashIn cumulative Discounted Optimized', dates,

cashincumdiscopt)
1574 plot.add_plot('CashOut cumulative Discounted Optimized', dates,

cashoutcumdiscopt)
1575 plot.set_title("Cash-Flow Discounted (Normal vs. Optimized)")
1576
1577 def initiate_toolbar(self):
1578 self.menubar = tk.Menu(self.root)
1579 self.root['menu'] = self.menubar
1580 for menu in ('file', 'create','portfolio','projects','activities',

'calculations', 'plot'):
1581 menu = menu.lower()
1582 label = menu.capitalize()
1583 exec("self.menubar.%s = tk.Menu(self.menubar, tearoff = 0)"%menu)
1584 exec("self.menubar.add_cascade(label = '%s', menu = self.menubar.%s)"%(

label,menu))
1585 self.menubar.file.add_command(label = 'Clear All', command = new_database)
1586 self.menubar.file.add_separator()
1587 self.menubar.file.add_command(label = 'Create a Random Portfolio', command =

create_a_portfolio)
1588 self.menubar.file.add_command(label = 'Import Validation Projects', command =

import_uptown_projects)
1589 self.menubar.file.add_separator()
1590 self.menubar.file.add_command(label = 'Database Info', command = database_info)
1591 self.menubar.file.add_command(label = 'Clean Database', command =

clean_database)
1592 self.menubar.file.add_separator()
1593 self.menubar.file.add_command(label = 'Export', command = export)
1594 self.menubar.file.add_separator()
1595 self.menubar.file.add_command(label = 'Verificate (random)', command =

verificate)

- 32 -

www.manaraa.com

1596 self.menubar.file.add_command(label = 'Validate (UPTOWN)', command = validate)
1597 self.menubar.file.add_separator()
1598 self.menubar.file.add_command(label = 'Exit', command = self.root.destroy)
1599 self.menubar.create.add_command(label = 'New Project', command = functools.

partial(Form_new, self.root, "projects"))
1600 self.menubar.create.add_command(label = 'New Activity', command = functools.

partial(Form_new, self.root, "activities"))
1601 self.menubar.create.add_command(label = 'New Relationship', command =

functools.partial(Form_new, self.root, "relationships"))
1602 self.menubar.portfolio.add_command(label = 'Show Portfolio', command =

functools.partial(self.create_table_from_sql,"portfolio"))
1603 self.menubar.projects.add_command(label = 'Show Projects', command =

functools.partial(self.create_table_from_sql,"projects"))
1604 self.menubar.activities.add_command(label = 'Show Activities', command =

functools.partial(self.create_table_from_sql,"activities"))
1605 self.menubar.activities.add_separator()
1606 self.menubar.activities.add_command(label = 'Show Relationships', command =

functools.partial(self.create_table_from_sql,"relationships"))
1607 self.menubar.calculations.add_command(label = 'Calculate', command =

functools.partial(calculate,"normal"))
1608 self.menubar.calculations.add_separator()
1609 #~ self.menubar.calculations.add_command(label = 'Optimize (10 trials)',

command = functools.partial(optimize,10))
1610 #~ self.menubar.calculations.add_command(label = 'Optimize (20 trials)',

command = functools.partial(optimize,20))
1611 #~ self.menubar.calculations.add_command(label = 'Optimize (50 trials)',

command = functools.partial(optimize,50))
1612 #~ self.menubar.calculations.add_command(label = 'Optimize (100 trials)',

command = functools.partial(optimize,100))
1613 self.menubar.calculations.add_command(label = 'Optimize', command = optimize)
1614 self.menubar.plot.add_command(label = 'Gantt Chart', command = functools.

partial(self.show_gantt_chart, 'normal'))
1615 self.menubar.plot.add_command(label = 'Gantt Chart Optimized', command =

functools.partial(self.show_gantt_chart, 'opt'))
1616 self.menubar.plot.add_separator()
1617 self.menubar.plot.add_command(label = 'Overdraft', command = functools.

partial(self.show_plot, 'overdraft'))
1618 self.menubar.plot.add_command(label = 'Overdraft Optimized', command =

functools.partial(self.show_plot, 'overdraftopt'))
1619 self.menubar.plot.add_command(label = 'Cashflow', command = functools.partial

(self.show_plot, 'cashflow'))
1620 self.menubar.plot.add_command(label = 'Cashflow Optimized', command =

functools.partial(self.show_plot, 'cashflowopt'))
1621 self.menubar.plot.add_separator()
1622 self.menubar.plot.add_command(label = 'Overdraft Discounted', command =

functools.partial(self.show_plot, 'overdraftdisc'))
1623 self.menubar.plot.add_command(label = 'Overdraft Discounted Optimized',

command = functools.partial(self.show_plot, 'overdraftdiscopt'))
1624 self.menubar.plot.add_command(label = 'Cashflow Discounted', command =

functools.partial(self.show_plot, 'cashflowdisc'))
1625 self.menubar.plot.add_command(label = 'Cashflow Discounted Optimized',

command = functools.partial(self.show_plot, 'cashflowdiscopt'))
1626
1627 def __init__(self):
1628 self.root = tk.Tk()
1629 self.root.minsize(500,500)
1630 self.root.geometry('1400x900+200+0')
1631 self.root.title("Portfolio Cash Flow Optimization")
1632 self.initiate_toolbar()
1633 self.frame = tk.Frame(self.root, bg = 'lightgrey')
1634 self.frame.pack(fill = 'both', expand = True)
1635 self.root.mainloop()
1636
1637 def time_test():
1638 number_of_cases = 100 # this is the number of cases to try
1639 test_numbers = []
1640 n_activities = []
1641 n_relationships = []

- 33 -

www.manaraa.com

1642 n_activitiesxrelationships = []
1643 n_activitiesprelationships = []
1644 times = []
1645 for test in range(1,number_of_cases + 1):
1646 new_database()
1647 create_a_portfolio2(3,50,2000) # change this to change the min and max

number of activities
1648 startt = datetime.datetime.now()
1649 calculate('normal')
1650 optimize()
1651 endt = datetime.datetime.now()
1652 time = (endt - startt).total_seconds()
1653 activitiesn = conn.execute('SELECT COUNT(*) FROM activities').fetchall()[0][0]
1654 relationshipsn = conn.execute('SELECT COUNT(*) FROM relationships').fetchall

()[0][0]
1655 test_numbers.append(test)
1656 n_activities.append(activitiesn)
1657 n_relationships.append(relationshipsn)
1658 n_activitiesxrelationships.append(activitiesn * relationshipsn)
1659 n_activitiesprelationships.append(activitiesn + relationshipsn)
1660 times.append(time)
1661 filename = 'time_test.csv'
1662 with open(filename,'w') as csv_file:
1663 csvw = csv.writer(csv_file)
1664 csvw.writerow(['Test #', 'Number of activities', 'Number of relationships',

'Number of activities x Number of relationships', 'Number of activities +
Number of relationships', 'Time (secs)'])

1665 for row in zip(test_numbers,n_activities,n_relationships,
n_activitiesxrelationships,n_activitiesprelationships,times):

1666 csvw.writerow(row)
1667
1668 def sensitivity_analysis():
1669 new_database()
1670 create_a_portfolio()
1671 conn.execute('Alter Table activities add column originalduration int(10);')
1672 conn.execute('Update activities set originalduration = duration;')
1673 npvs = []
1674 interests = []
1675 conn.execute('Update activities set duration = originalduration * 10')
1676 interest = 0
1677 while interest <= 0.5:
1678 conn.execute('Update projects set interest = %s;'%interest)
1679 calculate('normal')
1680 npvs.append(float(conn.execute('select npv from portfolio;').fetchall()[0][0]))
1681 interests.append(interest*100)
1682 interest += 0.02
1683 plt.plot(interests,npvs, 'o-')
1684 plt.xlabel("Interest %")
1685 plt.ylabel('Net Present Value (NPV) EGP')
1686 plt.title("Interest Rate Sensitivity Analysis")
1687 plt.savefig("interest.pdf")
1688 plt.close()
1689 #~ # ----------------------- Cost
1690 new_database()
1691 create_a_portfolio()
1692 conn.execute('Alter Table activities add column originalcost float(10);')
1693 conn.execute('Update activities set originalcost = cost;')
1694 costs = []
1695 npvs = []
1696 m = 1
1697 while m <= 2:
1698 conn.execute('Update activities set cost = originalcost * %s'%m)
1699 calculate('normal')
1700 npvs.append(float(conn.execute('select npv from portfolio;').fetchall()[0][0]))
1701 costs.append(conn.execute('select sum(cost) from activities;').fetchall()[0][

0])
1702 m += 0.1
1703 plt.plot(costs,npvs, 'o-')

- 34 -

www.manaraa.com

1704 plt.xlabel("Cost EGP")
1705 plt.ylabel('Net Present Value (NPV) EGP')
1706 plt.title("Cost Sensitivity Analysis")
1707 plt.savefig("cost.pdf")
1708 plt.close()
1709 # ----------------------- Cost + interest
1710 new_database()
1711 create_a_portfolio()
1712 conn.execute('Alter Table activities add column originalduration int(10);')
1713 conn.execute('Update activities set originalduration = duration;')
1714 conn.execute('Alter Table activities add column originalcost float(10);')
1715 conn.execute('Update activities set originalcost = cost;')
1716 conn.execute('Update activities set duration = originalduration * 2')
1717 m = 1
1718 while m <= 10:
1719 npvs = []
1720 interests = []
1721 costs = []
1722 interest = 0
1723 conn.execute('Update activities set cost = originalcost * %s'%m)
1724 while interest <= 0.5:
1725 conn.execute('Update projects set interest = %s;'%interest)
1726 calculate('normal')
1727 npvs.append(float(conn.execute('select npv from portfolio;').fetchall()[0

][0]))
1728 interests.append(interest*100)
1729 interest += 0.02
1730 label = "Cost Multiplier = " + str(m)
1731 plt.plot(interests,npvs, 'o-', label=label)
1732 m += 1
1733 plt.xlabel("Interest %")
1734 plt.ylabel('Net Present Value (NPV) EGP')
1735 plt.legend()
1736 plt.title("Interest Rate Sensitivity Analysis")
1737 plt.savefig("interestpluscost.pdf")
1738 webbrowser.open("interestpluscost.pdf")
1739 #~ # ----------------------- Cost + interest - percentage
1740 new_database()
1741 create_a_portfolio()
1742 conn.execute('Alter Table activities add column originalduration int(10);')
1743 conn.execute('Update activities set originalduration = duration;')
1744 conn.execute('Alter Table activities add column originalcost float(10);')
1745 conn.execute('Update activities set originalcost = cost;')
1746 conn.execute('Update activities set duration = originalduration * 2')
1747 conn.execute('Update projects set interest = 0;')
1748 calculate('normal')
1749 initial_npv = float(conn.execute('select npv from portfolio;').fetchall()[0][0])
1750 m = 1
1751 while m <= 10:
1752 npvs = []
1753 interests = []
1754 costs = []
1755 interest = 0
1756 conn.execute('Update activities set cost = originalcost * %s'%m)
1757 while interest <= 0.5:
1758 conn.execute('Update projects set interest = %s;'%interest)
1759 calculate('normal')
1760 npvs.append(float(conn.execute('select npv from portfolio;').fetchall()[0

][0]) / initial_npv * 100)
1761 interests.append(interest*100)
1762 interest += 0.02
1763 label = "Cost Multiplier = " + str(m)
1764 plt.plot(interests,npvs, 'o-', label=label)
1765 m += 1
1766 plt.xlabel("Interest %")
1767 plt.ylabel('Net Present Value (NPV) %')
1768 plt.legend()
1769 plt.title("Interest Rate Sensitivity Analysis")

- 35 -

www.manaraa.com

1770 plt.savefig("interestpluscostpercent.pdf")
1771 webbrowser.open("interestpluscostpercent.pdf")
1772 plt.close()
1773
1774 # -------- final level -----------
1775
1776 start_time = datetime.datetime.now()
1777
1778 database_file_name = 'database.db' # filname used for the database
1779 export_folder = './export/'
1780 figure_export_format = '.pdf'
1781 log_file_name = 'log.txt'
1782 if os.path.exists(log_file_name):
1783 os.remove(log_file_name)
1784 title = 'thesis'
1785 optimization_stoppingpercentage = 1.00002
1786 optimization_stoppingmaxtrials = 20
1787
1788
1789 conn = sqlite3.connect(database_file_name)
1790
1791 #~ time_test()
1792
1793 #~ for a in range(1,5+1):
1794 #~ title = 'Verification Trial %s - '%a
1795 #~ export_folder = './exportverification%s/'%a
1796 #~ verificate()
1797
1798 #~ verificate()
1799
1800 #~ export_folder = './exportvalidation/'
1801 #~ validate()
1802
1803 Main_window()
1804
1805 #~ sensitivity_analysis()
1806
1807 #~ new_database()
1808 #~ import_uptown_projects()
1809 #~ calculate("normal")
1810 #~ optimize()
1811 #~ export()
1812
1813
1814 conn.close()
1815
1816 end_time = datetime.datetime.now()
1817
1818 log("Start Time was " + str(start_time))
1819 log("End Time was " + str(end_time))
1820 log("Difference is " + str(end_time - start_time))
1821

- 36 -

	Cash flow optimization for construction engineering portfolios
	Recommended Citation
	APA Citation
	MLA Citation

	tmp.1592508243.pdf.thsH_

